Surface Acoustic Wave (SAW) Biosensors: Coupling of Sensing Layers and Measurement

  • Kerstin Länge
  • Friederike J. Gruhl
  • Michael RappEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 949)


Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Signal response changes result mainly from mass increase and viscoelasticity changes on the device surface. With an appropriate sensor configuration all types of binding reactions can be detected by determining resonant frequency changes of an oscillator. To create a biosensor, SAW devices have to be coated with a sensing layer binding specifically to the analyte. Intermediate hydrogel layers used within the coating have been proven to be very suitable to easily immobilize capture molecules or ligands corresponding to the analyte. However, aside from mass increase due to analyte binding, the SAW signal response in a subsequent binding experiment strongly depends on the morphology of the sensing layer, as this may lead to different relative changes of viscoelasticity. Bearing these points in mind, we present two basic biosensor coating procedures, one with immobilized capture molecule and a second with immobilized ligand, allowing reliable SAW biosensor signal responses in subsequent binding assays.

Key words

Biosensor Surface acoustic wave SAW SAW resonator Protein coupling Protein detection Surface modification Dextran Polyethylene glycol Carbodiimide chemistry 


  1. 1.
    Flory CA, Baer RL (1987) Surface transverse wave mode analysis and coupling to interdigital transducers. IEEE proc Ultrason Symp:313–318Google Scholar
  2. 2.
    Shiokawa S, Moriizumi T (1988) Design of SAW sensor in liquid. Jpn J Appl Phys Suppl 27-1:142–144Google Scholar
  3. 3.
    Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519CrossRefGoogle Scholar
  4. 4.
    Weiss W et al (1998) Viscoelastic behavior of antibody films on a shear horizontal acoustic surface wave sensor. Anal Chem 70:2881–2887CrossRefGoogle Scholar
  5. 5.
    Länge K, Rapp M (2008) Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors. Anal Biochem 377:170–175CrossRefGoogle Scholar
  6. 6.
    Länge K, Rapp M (2009) Influence of intermediate hydrogel layer and amount of binding sites on the signal response of surface acoustic wave biosensors. Sens Act B Chem 142:39–43CrossRefGoogle Scholar
  7. 7.
    Länge K et al (2003) A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection. Anal Chem 75:5561–5566CrossRefGoogle Scholar
  8. 8.
    Gizeli E et al (1997) Antibody binding to a functionalized supported lipid layer: a direct acoustic immunosensor. Anal Chem 69:4808–4813CrossRefGoogle Scholar
  9. 9.
    Gronewold TMA et al (2006) Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor. Anal Chem 78:4865–4871CrossRefGoogle Scholar
  10. 10.
    Masson JF et al (2004) Preparation of analyte-sensitive polymeric supports for biochemical sensors. Talanta 64:716–725CrossRefGoogle Scholar
  11. 11.
    Gedig ET (2008) In: Schasfoort RBM, Tudos AJ (eds) Handbook of surface plasmon resonance, 1st edn. RSC, CambridgeGoogle Scholar
  12. 12.
    Bender F et al (2004) On-line monitoring of polymer deposition for tailoring the waveguide characteristics of Love-wave biosensors. Langmuir 20:2315–2319CrossRefGoogle Scholar
  13. 13.
    Länge K, Grimm S, Rapp M (2007) Chemical modification of parylene C coatings for SAW biosensors. Sens Act B Chem 125:441–446CrossRefGoogle Scholar
  14. 14.
    Löfas S, Johnsson B (1990) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun:1526–1528Google Scholar
  15. 15.
    Österberg E et al (1995) Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J Biomed Mater Res 29:741–747CrossRefGoogle Scholar
  16. 16.
    McHale G et al (2000) Acoustic wave–liquid interactions. Mat Sci Eng C 12:17–22CrossRefGoogle Scholar
  17. 17.
    Lucklum R, Hauptmann P (2006) Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem 384:667–682CrossRefGoogle Scholar
  18. 18.
    Länge K, Gruhl FJ, Rapp M (2009) Influence of preparative carboxylation steps on the analyte response of an acoustic biosensor. IEEE Sens J 9:2033–2034CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  • Kerstin Länge
    • 1
  • Friederike J. Gruhl
    • 1
  • Michael Rapp
    • 1
    Email author
  1. 1.Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology (IMT)Eggenstein-LeopoldshafenGermany

Personalised recommendations