Charged-Coupled Device (CCD) Detectors for Lab-on-a Chip (LOC) Optical Analysis

  • Avraham RasoolyEmail author
  • Yordan Kostov
  • Hugh A. Bruck
Part of the Methods in Molecular Biology book series (MIMB, volume 949)


A critical element of any Lab-on-a-Chip (LOC) is a detector; among the many detection approaches, optical detection is very widely used for biodetection. One challenge for advancing the development of LOC for biodetection has been to enhance the portability and lower the cost for Point-of-Care diagnostics, which has the potential to enhance the quality of healthcare delivery for underserved populations and for global health. We describe a simple and relatively low cost charged-coupled device (CCD)-based detector that can be integrated with a conventional microtiter plate or a portable LOC assay for various optical detection modalities including fluorescence, chemiluminescence, densitometry, and colorimetric assays. In general, the portable battery-operated CCD-based detection system consists of four modules: (1) a cooled CCD digital camera to monitor light emission, (2) a LOC or microtiter plate to perform assays, (3) a light source to illuminate the assay (such as electroluminescence (EL) or light emitting diode (LED)), and (4) a portable computer to acquire and analyze images. The configuration of the fluorescence detector presented here was designed to measure fluorogenic excitation at 490 nm and to monitor emission at 523 nm used for FITC detection.

The LOC used for this detection system was fabricated with laminated object manufacturing (LOM) technology, and was designed to detection activity of botulinum neurotoxin serotype A (BoNT-A) using a fluorogenic peptide substrate (SNAP-25) for botulinum neurotoxin serotype A (BoNT-A) labeled with FITC. The limit of detection (LOD) for the CCD detector is 0.5 nM (25 ng/ml). The portable system is small and is powered by a 12 V source. The modular detector was designed with easily interchangeable LEDs, ELs, filters, lenses, and LOC, and can be used and adapted for a wide variety of densitometry, florescence and colorimetric assays.

Key words

LED Electroluminescence (EL) CCD Fluorescence Laminated object manufacturing (LOM) Fluorometer Botulinum neurotoxin 


  1. 1.
    Capitan-Vallvey LF et al (2007) Oxygen-sensing film coated photodetectors for portable instrumentation. Anal Chim Acta 583:166–173CrossRefGoogle Scholar
  2. 2.
    Mac Sweeney MM et al (2004) Characterization and optimization of an optical DNA hybridization sensor for the detection of multi-drug resistant tuberculosis. Conf Proc IEEE Eng Med Biol Soc 3:1960–1963Google Scholar
  3. 3.
    Claycomb RW, Delwiche MJ (1998) Biosensor for on-line measurement of bovine progesterone during milking. Biosens Bioelectron 13:1173–1180CrossRefGoogle Scholar
  4. 4.
    Bruno AE et al (1997) All-solid-state miniaturized fluorescence sensor array for the determination of critical gases and electrolytes in blood. Anal Chem 69:507–513CrossRefGoogle Scholar
  5. 5.
    Moehrs S et al (2006) A detector head design for small-animal PET with silicon photomultipliers (SiPM). Phys Med Biol 51:1113–1127CrossRefGoogle Scholar
  6. 6.
    Takei M, Kida T, Suzuki K (2001) Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot 55:229–234CrossRefGoogle Scholar
  7. 7.
    Ruiz-Martinez MC et al (1993) DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection. Anal Chem 65:2851–2858CrossRefGoogle Scholar
  8. 8.
    Tibbe AG et al (2001) Cell analysis system based on immunomagnetic cell selection and alignment followed by immunofluorescent analysis using compact disk technologies. Cytometry 43:31–37CrossRefGoogle Scholar
  9. 9.
    Tsukagoshi K, Jinno N, Nakajima R (2005) Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers. Anal Chem 77:1684–1688CrossRefGoogle Scholar
  10. 10.
    Roda A et al (2003) A rapid and sensitive 384-well microtitre format chemiluminescent enzyme immunoassay for 19-nortestosterone. Luminescence 18:72–78CrossRefGoogle Scholar
  11. 11.
    Ligler FS et al (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–477CrossRefGoogle Scholar
  12. 12.
    Svitel J et al (2001) Functionalized surfaces for optical biosensors: applications to in vitro pesticide residual analysis. J Mater Sci Mater Med 12:1075–1078CrossRefGoogle Scholar
  13. 13.
    Liu Y, Danielsson B (2007) Rapid high throughput assay for fluorimetric detection of doxorubicin–application of nucleic acid-dye bioprobe. Anal Chim Acta 587:47–51CrossRefGoogle Scholar
  14. 14.
    Burkert K et al (2007) Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter. Langmuir 23:3478–3484CrossRefGoogle Scholar
  15. 15.
    Tohda K, Gratzl M (2006) Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: color responses to pH, K+ and glucose. Anal Sci 22:937–941CrossRefGoogle Scholar
  16. 16.
    Feldstein MJ et al (1999) Array biosensor: optical and fluidics systems. Biomed Microdevices 1:139–153CrossRefGoogle Scholar
  17. 17.
    Sohn YS et al (2005) A microbead array chemical sensor using capillary-based sample introduction: toward the development of an “electronic tongue”. Biosens Bioelectron 21:303–312CrossRefGoogle Scholar
  18. 18.
    Knecht BG et al (2004) Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem 76:646–654CrossRefGoogle Scholar
  19. 19.
    Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487CrossRefGoogle Scholar
  20. 20.
    Ngundi MM et al (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40:2352–2356CrossRefGoogle Scholar
  21. 21.
    Moreno-Bondi MC et al (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens Bioelectron 21:1880–1886CrossRefGoogle Scholar
  22. 22.
    Ligler FS et al (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10CrossRefGoogle Scholar
  23. 23.
    Kostov Y et al (2009) A simple portable electroluminescence illumination-based CCD detector. Methods Mol Biol 503:259–272CrossRefGoogle Scholar
  24. 24.
    Sapsford KE et al (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 24:618–625CrossRefGoogle Scholar
  25. 25.
    Sun S et al (2010) Multi-wavelength Spatial LED illumination based detector for in vitro detection of Botulinum Neurotoxin A Activity. Sens Actuators B Chem 146:297–306CrossRefGoogle Scholar
  26. 26.
    Sapsford KE et al (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol 71:5590–5592CrossRefGoogle Scholar
  27. 27.
    Golden JP et al (2007) Target delivery in a microfluidic immunosensor. Biosens Bioelectron 22:2763–2767CrossRefGoogle Scholar
  28. 28.
    Higgins JA et al (2003) A handheld real time thermal cycler for bacterial pathogen detection. Biosens Bioelectron 18:1115–1123CrossRefGoogle Scholar
  29. 29.
    Sun S et al (2009) Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab Chip 9:3275–3281CrossRefGoogle Scholar
  30. 30.
    Munson MS et al (2004) Suppression of non-specific adsorption using sheath flow. Lab Chip 4:438–445CrossRefGoogle Scholar
  31. 31.
    Rossier JS et al (1999) Microchannel networks for electrophoretic separations. Electrophoresis 20:727–731CrossRefGoogle Scholar
  32. 32.
    Rossier J, Reymond F, Michel PE (2002) Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23:858–867CrossRefGoogle Scholar
  33. 33.
    Rasooly R et al (2008) Detection of botulinum neurotoxin-A activity in food by peptide cleavage assay. Int J Food Microbiol 126:135–139CrossRefGoogle Scholar
  34. 34.
    Dong M et al (2004) Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci USA 101:14701–14706CrossRefGoogle Scholar
  35. 35.
    Sapsford KE et al (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin a activity. Biosens Bioelectron 24(4):618–625CrossRefGoogle Scholar
  36. 36.
    Frisk ML et al (2008) Bead-based microfluidic toxin sensor integrating evaporative signal amplification. Lab Chip 8:1793–1800CrossRefGoogle Scholar
  37. 37.
    Rasooly R, Do PM (2008) Development of an in vitro activity assay as an alternative to the mouse bioassay for Clostridium botulinum neurotoxin type A. Appl Environ Microbiol 74:4309–4313CrossRefGoogle Scholar
  38. 38.
    Irawan R et al (2005) Cross-talk problem on a fluorescence multi-channel microfluidic chip system. Biomed Microdevices 7:205–211CrossRefGoogle Scholar
  39. 39.
    Hawkins KR, Yager P (2003) Nonlinear decrease of background fluorescence in polymer thin-films—a survey of materials and how they can complicate fluorescence detection in microTAS. Lab Chip 3:248–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  • Avraham Rasooly
    • 1
    • 2
    Email author
  • Yordan Kostov
    • 3
    • 4
  • Hugh A. Bruck
    • 5
  1. 1.Division of Biology, Office of Science and EngineeringFDA Center for Devices and Radiological Health (CDRH)Silver SpringUSA
  2. 2.National Cancer InstituteRockvilleUSA
  3. 3.Steven Sun Division of Biology Office of Science and EngineeringFDA Center for Devices and Radiological Health (CDRH)Silver SpringUSA
  4. 4.University of Maryland Baltimore CountyBaltimore CountyUSA
  5. 5.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations