Applications of Microfluidics for Molecular Diagnostics

  • Harikrishnan Jayamohan
  • Himanshu J. Sant
  • Bruce K. GaleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 949)


Diagnostic assays implemented in microfluidic devices have developed rapidly over the past decade and are expected to become commonplace in the next few years. Hundreds of microfluidics-based approaches towards clinical diagnostics and pathogen detection have been reported with a general theme of rapid and customizable assays that are potentially cost-effective. This chapter reviews microfluidics in molecular diagnostics based on application areas with a concise review of microfluidics in general. Basic principles of microfabrication are briefly reviewed and the transition to polymer fabricated devices is discussed. Most current microfluidic diagnostic devices are designed to target a single disease, such as a given cancer or a variety of pathogens, and there will likely be a large market for these focused devices; however, the future of molecular diagnostics lies in highly multiplexed microfluidic devices that can screen for potentially hundreds of diseases simultaneously.

Key words

Microfluidics Micro-total-analysis-systems Lab-on-a-chip Point-of-care devices Sample preparation MEMS Rapid prototyping Biomarker detection Personalized medicine Global health care 



The authors thank Keng-Min Lin for the schematic diagram in Fig. 1. The authors would like to thank the Nano Institute of Utah for funding this work through a nanotechnology training fellowship.


  1. 1.
    Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144CrossRefGoogle Scholar
  2. 2.
    Kiechle FL, Holland CA (2009) Point- of-Care Testing and Molecular Diagnostics: Miniaturization Required. Clin Lab Med 29(3):555–560CrossRefGoogle Scholar
  3. 3.
    UNAIDS (2010) UNAIDS Report on the global AIDS epidemic, UNAIDS.Google Scholar
  4. 4.
    Steven J, Zullo SS, Patrick Looney J, Barker PE (2010) Nanotechnology: Emerging Developments and Early Detection of Cancer, A Two-Day Workshop sponsored by the National Cancer Institute and the National Institute of Standards and Technology, National Cancer Institute, Gaithersburg.Google Scholar
  5. 5.
    Foster RS, Heffler SK (2009) Updated and Extended National Health Expenditure Projections, 2010–2019, Office of the Actuary. Centers for Medicare & Medicaid Services, MarylandGoogle Scholar
  6. 6.
    Cirino NM, Musser KA, Egan C (2004) Multiplex diagnostic platforms for detection of biothreat agents. Expert Rev Mol Diagn 4:841–857CrossRefGoogle Scholar
  7. 7.
    (USDA) U S D o HHS H a A (ed) (2011) National select agent registry: overview. Department of Health & Human Service, Washington DCGoogle Scholar
  8. 8.
    Food and Drug Administration (2008) Recommendations: Clinical Laboratory Improvement Amendments of 1988 (CLIA Waiver Applications for Manufacturers of In Vitro Diagnostic Devices.Google Scholar
  9. 9.
    Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8:1982–1983CrossRefGoogle Scholar
  10. 10.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  11. 11.
    Arora A et al (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847CrossRefGoogle Scholar
  12. 12.
    Salieb-Beugelaar GB et al (2010) Latest developments in microfluidic cell biology and analysis systems. Anal Chem 82:4848–4864CrossRefGoogle Scholar
  13. 13.
    West J et al (2008) Micro total analysis systems: latest achievements. Anal Chem 80:4403–4419CrossRefGoogle Scholar
  14. 14.
    Trietsch SJ et al (2011) Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review Chemometr Intell Lab 108:64–75.Google Scholar
  15. 15.
    Weston AD, Hood L (2004) Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 3:179–196CrossRefGoogle Scholar
  16. 16.
    Reyes DR (2002) Micro Total Analysis Systems. 1. Introduction. Theory, and Technology 74(12):2623–2636Google Scholar
  17. 17.
    Jacobson SC, Moore AW, Ramsey JM (1995) Fused quartz substrates for microchip electrophoresis. Anal Chem 67:2059–2063CrossRefGoogle Scholar
  18. 18.
    von Heeren F et al (1996) Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure. Anal Chem 68:2044–2053CrossRefGoogle Scholar
  19. 19.
    Moore AW Jr, Jacobson SC, Ramsey JM (1995) Microchip separations of neutral species via micellar electrokinetic capillary chromatography. Anal Chem 67:4184–4189CrossRefGoogle Scholar
  20. 20.
    Woolley AT, Mathies RA (1995) Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem 67:3676–3680CrossRefGoogle Scholar
  21. 21.
    Shoffner MA et al (1996) Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res 24:375–379CrossRefGoogle Scholar
  22. 22.
    Koutny LB et al (1996) Microchip electrophoretic immunoassay for serum cortisol. Anal Chem 68:18–22CrossRefGoogle Scholar
  23. 23.
    Hadd AG et al (1997) Microchip device for performing enzyme assays. Anal Chem 69:3407–3412CrossRefGoogle Scholar
  24. 24.
    Colyer CL, Mangru SD, Harrison DJ (1997) Microchip-based capillary electrophoresis of human serum proteins. J Chromatogr A 781:271–276CrossRefGoogle Scholar
  25. 25.
    Raymond DE, Manz A, Widmer HM (1996) Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure. Anal Chem 68:2515–2522CrossRefGoogle Scholar
  26. 26.
    von Heeren F et al (1996) Characterization of electrophoretic sample injection and separation in a gel filled cyclic planar microstructure. J Microcolumn Separations 8:373–381CrossRefGoogle Scholar
  27. 27.
    Woolley AT, Sensabaugh GF, Mathies RA (1997) High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Anal Chem 69:2181–2186CrossRefGoogle Scholar
  28. 28.
    Delamarche E et al (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:779CrossRefGoogle Scholar
  29. 29.
    Freaney R et al (1997) Novel instrumentation for real-time monitoring using miniaturized flow systems with integrated biosensors. Ann Clin Biochem 34:291–302Google Scholar
  30. 30.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B: Chemical 1:244–248CrossRefGoogle Scholar
  31. 31.
    Harrison DJ, Manz A, Glavina PG (1991) Electroosmotic pumping within a chemical sensor system integrated on silicon. In: Proc. IEEE Int. Conf. Solid-State Sensors and Actuators (Transducers ‘91), San Francisco, USA, pp 792–795Google Scholar
  32. 32.
    Seiler K, Harrison DJ, Manz A (1993) Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Anal Chem 65:1481–1488CrossRefGoogle Scholar
  33. 33.
    Sobek D et al. (1993) A microfabricated flow chamber for optical measurements in fluids. In: Proc. 6th IEEE MEMS, Fort Lauderdale, USA, pp 219–224Google Scholar
  34. 34.
    Northrup MA et al. (1993) DNA amplification with a microfabricated reaction chamber. In: Proc. of The 7th Int. Conf. on Solid-State Sensors and Actuators (Transducers ‘93), Yokohama, Japan, pp 924–926Google Scholar
  35. 35.
    Bousse L et al (1994) Micromachined multichannel systems for the measurement of cellular metabolism. Sensors Actuators B: Chemical 20:145–150CrossRefGoogle Scholar
  36. 36.
    Jacobson SC et al (1994) Precolumn reactions with electrophoretic analysis integrated on a microchip. Anal Chem 66:4127–4132CrossRefGoogle Scholar
  37. 37.
    Jacobson SC et al (1994) Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal Chem 66:3472–3476CrossRefGoogle Scholar
  38. 38.
    Jacobson SC et al (1994) High-speed separations on a microchip. Anal Chem 66:1114–1118CrossRefGoogle Scholar
  39. 39.
    Mensinger H et al (1995) Microreactor with integrated static mixer and analysis system. Kluwer Academic Publishers, The Netherlands, p 237Google Scholar
  40. 40.
    Effenhauser CS et al (1994) High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device. Anal Chem 66:2949–2953CrossRefGoogle Scholar
  41. 41.
    Woolley AT, Mathies RA (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci 91:11348CrossRefGoogle Scholar
  42. 42.
    Fan ZH, Harrison DJ (1994) Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal Chem 66:177–184CrossRefGoogle Scholar
  43. 43.
    Fuhr G, and Wagner B. (1994) Electric field mediated cell manipulation, characterisation and cultivation in highly conductive media. Paper presented at the MicroTAS, University of Twente, Netherlands, 21–22 Nov 1994Google Scholar
  44. 44.
    Manz A et al (1994) Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J Micromech Microeng 4:257CrossRefGoogle Scholar
  45. 45.
    Raymond DE, Manz A, Widmer HM (1994) Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip. Anal Chem 66:2858–2865CrossRefGoogle Scholar
  46. 46.
    Verpoorte EMJ et al (1994) Three-dimensional micro flow manifolds for miniaturized chemical analysis systems. J Micromech Microeng 4:246CrossRefGoogle Scholar
  47. 47.
    Seiler K et al (1994) Electroosmotic pumping and valveless control of fluid flow within a manifold of capillaries on a glass chip. Anal Chem 66:3485–3491CrossRefGoogle Scholar
  48. 48.
    Jacobson SC et al (1994) Open channel electrochromatography on a microchip. Anal Chem 66:2369–2373CrossRefGoogle Scholar
  49. 49.
    Feustel A, Muller J, Relling V (1995) A microsystem mass spectrometer. Springer, Berlin, p 299Google Scholar
  50. 50.
    Kim E, Xia Y, Whitesides GM (1995) Polymer microstructures formed by moulding in capillaries. Nature 376:581–584CrossRefGoogle Scholar
  51. 51.
    Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mat Sci 28:153–184CrossRefGoogle Scholar
  52. 52.
    Whitesides GM et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  53. 53.
    Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors? Trends Biotechnol 13:228–235CrossRefGoogle Scholar
  54. 54.
    Zhao XM, Xia Y, Whitesides GM (1996) Fabrication of three dimensional micro structures: Microtransfer molding. Adv Mater 8:837–840CrossRefGoogle Scholar
  55. 55.
    Bartholomeusz DA, Boutté RW, Gale BK (2009) Xurography: Microfluidic Prototyping with a Cutting Plotter. In: Herold K, Rasooly A (eds) Lab on a Chip Technology: Fabrication and Microfluidics. Caister Academic Press, United Kingdom, pp 65–82Google Scholar
  56. 56.
    Gale BK et al (2008) Fabrication and packaging: Low-cost MEMS technologies. In: Gianchandani YB, Tabata O, Zappe HP (eds) Comprehensive microsystems. Elsevier, Amsterdam, pp 341–378CrossRefGoogle Scholar
  57. 57.
    Martynova L et al (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789CrossRefGoogle Scholar
  58. 58.
    Gonzalez C, Collins SD, Smith RL (1998) Fluidic interconnects for modular assembly of chemical microsystems. Sens. Actuators B: Chemical 49:40–45Google Scholar
  59. 59.
    Johnson KS et al (1996) Using neutral metastable argon atoms and contamination lithography to form nanostructures in silicon, silicon dioxide, and gold. Appl Phys Lett 69:2773–2775CrossRefGoogle Scholar
  60. 60.
    Lorenz H et al (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7:121CrossRefGoogle Scholar
  61. 61.
    Larsson O et al (1997) Silicon based replication technology of 3D-microstructures by conventional CD-injection molding techniques. IEEE 1412:1415–1418Google Scholar
  62. 62.
    Klaassen EH et al. (1996) Silicon fusion bonding and deep reactive ion etching; a new technology for microstructures. Sens. Actuators A: Physical 52:132–139Google Scholar
  63. 63.
    Juan WH, Pang SW (1995) A novel etch-­diffusion process for fabricating high aspect ratio Si microstructures. In: Proc. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers ‘95), Stockholm, Sweden, pp 560–563Google Scholar
  64. 64.
    Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC, Boca Raton, FLGoogle Scholar
  65. 65.
    Rolland JP et al (2004) High Resolution Soft Lithography: Enabling Materials for Nanotechnologies. Angewandte Chemie 116:5920–5923CrossRefGoogle Scholar
  66. 66.
    Wasatch Microfluidics, LLC, 12 Nov 2012Google Scholar
  67. 67.
    Rivet C et al (2010) Microfluidics for medical diagnostics and biosensors. Chem Engine Sci 66:1490–1507CrossRefGoogle Scholar
  68. 68.
    Crews N, Wittwer C, Gale B (2008) Continuous-flow thermal gradient PCR. Biomed Microdevices 10:187–195CrossRefGoogle Scholar
  69. 69.
    Bartholomeusz DA, Boutté RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. Microelectromechanical Syst J 14:1364–1374CrossRefGoogle Scholar
  70. 70.
    Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242–246CrossRefGoogle Scholar
  71. 71.
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRefGoogle Scholar
  72. 72.
    Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105:19606–19611CrossRefGoogle Scholar
  73. 73.
    Martinez AW et al (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRefGoogle Scholar
  74. 74.
    Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78:788–792CrossRefGoogle Scholar
  75. 75.
    Yager P et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefGoogle Scholar
  76. 76.
    Squires TM, Quake SR (2005) Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 77:977CrossRefGoogle Scholar
  77. 77.
    Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  78. 78.
    Demello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402CrossRefGoogle Scholar
  79. 79.
    Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031CrossRefGoogle Scholar
  80. 80.
    Singer PA et al (2007) Grand challenges in global health: the ethical, social and cultural program. PLoS Med 4:e265CrossRefGoogle Scholar
  81. 81.
    Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57CrossRefGoogle Scholar
  82. 82.
    World Health Organization (2010) World malaria report: 2010. World Health Organization, GenevaGoogle Scholar
  83. 83.
    World Health Organization (2010) 2010/2011 Tuberculosis Global Facts, Geneva.Google Scholar
  84. 84.
    United Nations (2000) United Nations Millennium Declaration.Google Scholar
  85. 85.
    World Health Organization. (2009–2010) Situation updates - Pandemic (H1N1) 2009, World Health Organization, Geneva.Google Scholar
  86. 86.
    Reed C et al (2009) Estimates of the prevalence of pandemic (H1N1) 2009, United States, April-July 2009. Emerg Infect Dis 15:2004–2007CrossRefGoogle Scholar
  87. 87.
    Ivnitski D et al (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624CrossRefGoogle Scholar
  88. 88.
    Kim J et al. (2010) Sample to answer: a fully integrated nucleic acid identification system for bacteria monitoring. In: Becker H, Wang W (eds) Proc. SPIE, vol 7593, pp 75930SGoogle Scholar
  89. 89.
    Kim J et al (2009) Microfluidic sample preparation: cell lysis and nucleic acidpurification. Integr Biol 1:574–586CrossRefGoogle Scholar
  90. 90.
    Sant HJ et al (2010) Integrated Microfluidics for Serotype Identification of Foot and Mouth Disease Virus, in Proceedings of The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Groningen, The NetherlandsGoogle Scholar
  91. 91.
    Velusamy V et al (2010) An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 28:232–254CrossRefGoogle Scholar
  92. 92.
    Lazcka O, Campo F, Munoz FX (2007) Pathogen detection: A perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217CrossRefGoogle Scholar
  93. 93.
    Xiang Q et al (2006) Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens Bioelectron 21(10):2006–2009CrossRefGoogle Scholar
  94. 94.
    Gao Y et al (2008) Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum. Anal Chim Acta 606:98–107CrossRefGoogle Scholar
  95. 95.
    Meagher RJ et al (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8:2046–2053CrossRefGoogle Scholar
  96. 96.
    JinSeok H, Hua SZ (2009) An overview of recent strategies in pathogen sensing. Sensors 9:4483–4502CrossRefGoogle Scholar
  97. 97.
    Boehm DA, Gottlieb PA, Hua SZ (2007) On-chip microfluidic biosensor for bacterial detection and identification. Sensors Actuators B: Chemical 126:508–514CrossRefGoogle Scholar
  98. 98.
    Liao JC et al (2006) Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 44:561–570CrossRefGoogle Scholar
  99. 99.
    Stevens DY et al (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8:2038–2045CrossRefGoogle Scholar
  100. 100.
    Cheng X, Chen G, Rodriguez WR (2009) Micro-and nanotechnology for viral detection. Anal Bioanal Chem 393:487–501CrossRefGoogle Scholar
  101. 101.
    Kortepeter MG, Parker GW (1999) Potential biological weapons threats. Emerg Infect Dis 5:523–527CrossRefGoogle Scholar
  102. 102.
    Desai D, Wu G, Zaman MH (2010) Tackling HIV through robust diagnostics in the developing world: current status and future opportunities. Lab Chip 11(2):194–211CrossRefGoogle Scholar
  103. 103.
    Lee WG et al (2010) Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62:449–457CrossRefGoogle Scholar
  104. 104.
    Lee SH et al (2008) A polymer lab-on-a-chip for reverse transcription (RT)-PCR based point-of-care clinical diagnostics. Lab Chip 8:2121–2127CrossRefGoogle Scholar
  105. 105.
    Cheng X et al (2009) Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics. Lab Chip 9:1357–1364CrossRefGoogle Scholar
  106. 106.
    Cheng X et al (2007) A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 7:170–178CrossRefGoogle Scholar
  107. 107.
    Cheng X et al (2007) A microchip approach for practical label-free CD4+ T-cell counting of HIV-infected subjects in resource-poor settings. JAIDS J Acquired Immune Deficiency Syndrom 45:257–261Google Scholar
  108. 108.
    Moon SJ et al (2009) Integrating microfluidics and lensless imaging for point-of-care testing. Biosens Bioelectron 24:3208–3214CrossRefGoogle Scholar
  109. 109.
    Cheng X et al (2007) Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–755CrossRefGoogle Scholar
  110. 110.
    Gohring JT, Fan X (2010) Label Free Detection of CD4+ and CD8+ T Cells Using the Optofluidic Ring Resonator. Sensors 10:5798–5808CrossRefGoogle Scholar
  111. 111.
    Wang JH et al (2011) An integrated microfluidic system for counting of CD4+/CD8+ T lymphocytes. Microfluid Nanofluid 10:531–541Google Scholar
  112. 112.
    Yamanaka K et al (2011) Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst 136(10):2064–2068CrossRefGoogle Scholar
  113. 113.
    Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939CrossRefGoogle Scholar
  114. 114.
    Lien KY et al (2011) Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system. Biosens Bioelectron 26:3900–3907Google Scholar
  115. 115.
    Ferguson BS et al (2011) Genetic Analysis of H1N1 Influenza Virus from Throat Swab Samples in a Microfluidic System for Point-of-Care Diagnostics. J Am Chem Soc 133(23):9129–9135CrossRefGoogle Scholar
  116. 116.
    Weiss VU et al (2007) Virus analysis by electrophoresis on a microfluidic chip. J Chromatogr B 860:173–179CrossRefGoogle Scholar
  117. 117.
    Zhu H et al (2008) Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 133:356–360CrossRefGoogle Scholar
  118. 118.
    Huh YS et al (2008) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9:433–439CrossRefGoogle Scholar
  119. 119.
    Weng CH et al (2011) A suction-type microfluidic immunosensing chip for rapid detection of the dengue virus. Biomed Microdevices 13(3):585–595CrossRefGoogle Scholar
  120. 120.
    Lee BS et al (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555CrossRefGoogle Scholar
  121. 121.
    Heinze BC et al (2009) Microfluidic immunosensor for rapid and sensitive detection of bovine viral diarrhea virus. Sensors and Actuators B: Chemical 138:491–496CrossRefGoogle Scholar
  122. 122.
    Wang C et al (2011) An integrated microfluidic loop-mediated-isothermal-amplification system for rapid sample pre-treatment and detection of viruses. Biosens Bioelectron 26(5):2045–2052CrossRefGoogle Scholar
  123. 123.
    Tothill IE (2009) Biosensors for cancer markers diagnosis. Elsevier, Amsterdam, pp 55–62Google Scholar
  124. 124.
    Choi YE, Kwak JW, Park JW (2010) Nanotechnology for early cancer detection. Sensors 10:428–455CrossRefGoogle Scholar
  125. 125.
    Kumar S, Mohan A, Guleria R (2006) Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers 11:385–405CrossRefGoogle Scholar
  126. 126.
    Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452:571–579CrossRefGoogle Scholar
  127. 127.
    Saerens D et al (2008) Antibody fragments as probe in biosensor development. Sensors 8:4669–4686CrossRefGoogle Scholar
  128. 128.
    D’Haeseleer P (2006) How does DNA sequence motif discovery work? Nat Biotechnol 24:959–961CrossRefGoogle Scholar
  129. 129.
    Makarov DV et al (2009) Biomarkers for prostate cancer. Annu Rev Med 60:139–151CrossRefGoogle Scholar
  130. 130.
    Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892CrossRefGoogle Scholar
  131. 131.
    Legendre LA et al (2008) Toward a Simplified Microfluidic Device for Ultra-fast Genetic Analysis with Sample-In/Answer-Out Capability: Application to T-Cell Lymphoma Diagnosis. J Assoc Laboratory Automation 13:351–360CrossRefGoogle Scholar
  132. 132.
    Diercks AH et al (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386:30–35CrossRefGoogle Scholar
  133. 133.
    Lin DH et al (2010) Internally calibrated quantification of VEGF in human plasma by fluorescence immunoassays in disposable elastomeric microfluidic devices. J Chromatogr B 878:258–263CrossRefGoogle Scholar
  134. 134.
    Lee H et al (2008) Chip–NMR biosensor for detection and molecular analysis of cells. Nat Med 14:869–874CrossRefGoogle Scholar
  135. 135.
    Lazar IM (2008) Microfluidic bioanalytical platforms with mass spectrometry detection for biomarker discovery and screening In: Severine le Gac, Albert van den Berg (eds) Miniaturization and Mass Spectrometry, Royal Society of Chemistry, 1st ed., pp 151–172Google Scholar
  136. 136.
    Zhang K et al (2010) A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosens Bioelectron 26(2):935–939CrossRefGoogle Scholar
  137. 137.
    von Muhlen MG et al (2010) Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem 82:1905–1910CrossRefGoogle Scholar
  138. 138.
    Zani A et al (2011) A New Electrochemical Multiplexed Assay for PSA Cancer Marker Detection. Electroanalysis 23:91–99CrossRefGoogle Scholar
  139. 139.
    Fragoso A et al (2010) Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples. Lab Chip 11(4):625–631CrossRefGoogle Scholar
  140. 140.
    Kellner C et al (2011) Automated microsystem for electrochemical detection of cancer markers. Electrophoresis 32:926–930CrossRefGoogle Scholar
  141. O’Sullivan A et al (2011) Cost Estimation of Cardiovascular Disease Events in the US. Pharmacoeconomics 29(8):693–704Google Scholar
  142. 142.
    McDonnell B et al (2009) Cardiac biomarkers and the case for point-of-care testing. Clin Biochem 42:549–561CrossRefGoogle Scholar
  143. 143.
    Mohammed MI, Desmulliez MPY (2010) Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11(4):569–595CrossRefGoogle Scholar
  144. 144.
    Wu AHB et al (2004) Evaluation of a point-of-care assay for cardiac markers for patients suspected of acute myocardial infarction. Clin Chim Acta 346:211–219CrossRefGoogle Scholar
  145. 145.
    Ordonez-Llanos J et al (2006) Risk stratification of chest pain patients by point-of-care cardiac troponin T and myoglobin measured in the emergency department. Clin Chim Acta 365:93–97CrossRefGoogle Scholar
  146. 146.
    James SK et al (2004) A rapid troponin I assay is not optimal for determination of troponin status and prediction of subsequent cardiac events at suspicion of unstable coronary syndromes. Int J Cardiol 93:113–120CrossRefGoogle Scholar
  147. 147.
    Cramer GE et al (2007) Lack of concordance between a rapid bedside and conventional laboratory method of cardiac troponin testing: impact on risk stratification of patients suspected of acute coronary syndrome. Clin Chim Acta 381:164–166CrossRefGoogle Scholar
  148. 148.
    Jönsson C et al (2008) Silane–dextran chemistry on lateral flow polymer chips for immunoassays. Lab Chip 8:1191–1197CrossRefGoogle Scholar
  149. 149.
    Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337CrossRefGoogle Scholar
  150. 150.
    Hong B et al (2008) Highly sensitive rapid, reliable, and automatic cardiovascular disease diagnosis with nanoparticle fluorescence enhancer and MEMS. Adv Exp Med Biol 614:265–273CrossRefGoogle Scholar
  151. 151.
    Bhattacharyya A, Klapperich CM (2007) Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed Microdevices 9:245–251CrossRefGoogle Scholar
  152. 152.
    Cho IH et al (2009) Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Anal Chim Acta 632:247–255CrossRefGoogle Scholar
  153. 153.
    Huang H et al (2009) Rapid analysis of alpha-fetoprotein by chemiluminescence microfluidic immunoassay system based on super-paramagnetic microbeads. Biomed Microdevices 11:213–216CrossRefGoogle Scholar
  154. 154.
    Sista R et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104CrossRefGoogle Scholar
  155. 155.
    Kurita R et al (2006) On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem 78:5525–5531CrossRefGoogle Scholar
  156. 156.
    Tweedie M et al (2006) Fabrication of impedimetric sensors for label-free Point-of-Care immunoassay cardiac marker systems, with passive microfluidic delivery. IEEE 1:4610–4614Google Scholar
  157. 157.
    Christenson RH, Azzazy HME (2009) Cardiac point of care testing: a focused review of current National Academy of Clinical Biochemistry guidelines and measurement platforms. Clin Biochem 42:150–157CrossRefGoogle Scholar
  158. 158.
    Billah M, Hays HCW, Millner PA (2008) Development of a myoglobin impedimetric immunosensor based on mixed self-assembled monolayer onto gold. Microchimica Acta 160:447–454CrossRefGoogle Scholar
  159. 159.
    Zhou F et al (2010) Electrochemical Immunosensor for Simultaneous Detection of Dual Cardiac Markers Based on a Poly (Dimethylsiloxane)-Gold Nanoparticles Composite Microfluidic Chip: A Proof of Principle. Clin Chem 56:1701–1707CrossRefGoogle Scholar
  160. 160.
    Chen X et al (2008) Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem 80:2133–2140CrossRefGoogle Scholar
  161. 161.
    Mitsakakis K, Gizeli E (2011) Detection of multiple cardiac markers with an integrated acoustic platform for cardiovascular risk assessment. Anal Chim Acta 699(1):1–5CrossRefGoogle Scholar
  162. 162.
    Hong J, Edel JB, deMello AJ (2009) Micro-and nanofluidic systems for high-throughput biological screening. Drug Discov Today 14:134–146CrossRefGoogle Scholar
  163. 163.
    Liu J et al (2009) In Situ Microarray Fabrication and Analysis Using a Microfluidic Flow Cell Array Integrated with Surface Plasmon Resonance Microscopy. Anal Chem 81:4296–4301CrossRefGoogle Scholar
  164. 164.
    Caliper LifeSciences-Target ID/Validation Applications. Accessed 26 May 2011
  165. 165.
    The FilmArray Respiratory Panel. Accessed 12 Nov 2012.
  166. 166.
    (2011) search issued patents for “microfluidic” in title or abstract, United States Patent and Trademark office.Google Scholar
  167. 167.
    Mark D et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182CrossRefGoogle Scholar
  168. 168.
    Becker H (2009) It’s the economy. Lab Chip 9:2759–2762CrossRefGoogle Scholar
  169. 169.
    Kim L (2011)’s list of microfluidics/lab-on-a-chip companies. 12 Nov 2012Google Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  • Harikrishnan Jayamohan
    • 1
  • Himanshu J. Sant
    • 1
  • Bruce K. Gale
    • 1
    Email author
  1. 1.Department of Mechanical Engineering, State of Utah Center of Excellence for Biomedical MicrofluidicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations