Advertisement

The Application of Microfluidic Devices for Viral Diagnosis in Developing Countries

  • Samantha M. Hattersley
  • John Greenman
  • Stephen J. HaswellEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 949)

Abstract

Whilst diseases such as diabetes and cardiovascular disorders are increasing in the developed world, the main threat to global health remains viral-based infectious disease. Such diseases are notably prevalent in developing countries, where they represent a major cause of mortality; however, their detection and prevention is typically hampered by poor infrastructure and a lack of resources to support the sophisticated diagnostic tools commonly found in modern laboratories. Microfluidic-based diagnostics has the potential to close the gap between developed and developing world medical needs due to the robustness and reduced operating costs such technology offers. The most recent developments in microfluidic diagnostics for viral infections have explored the separation and enumeration of immune cells, the capture and identification of viral particles, and antiviral drug evaluation within microchannels and chambers. Advances in solid-phase separation, isothermal amplification, real-time detection of nucleotide products, and improved efficiency of detection systems in microfluidic platforms have also opened up opportunities for diagnostic innovation. This chapter reviews the potential capability microfluidic technology can offer in addressing the practical challenges of providing diagnostic technology for developing countries, illustrated by research on key viral diseases.

Key words

Microfluidic Diagnostic Viral Developing world HIV Influenza Dengue fever 

References

  1. 1.
    Siefkes D (1993) The origin of HIV-1, the AIDS virus. Med Hypotheses 41(4):289–299CrossRefGoogle Scholar
  2. 2.
    WHO (1978) Ebola haemorrhagic fever in Sudan, 1976. Bull World Health Organ 56(2):247–270Google Scholar
  3. 3.
    Ng CW, Choo WY, Chong HT, Dahlui M, Goh KJ, Tan CT (2009) Long-term socioeconomic impact of the Nipah Virus encephalitis outbreak in Bukit Pelanduk, Negeri Sembilan, Malaysia: A mixed methods approach. Neurology Asia 14(2):101–107Google Scholar
  4. 4.
    WHO (2009) Global Health Risks—Mortality and burden of disease attributable to selected major risks. Available from: http://www.who.int/healthinfo/global_burden_disease/global_health_risks/en/index.htmlAccessed 12 Nov 2012.
  5. 5.
    Welch RJA, Anderson BL, Litwin CM (2008) Evaluation of a new commercial enzyme immunoassay for the detection of IgM antibodies to West Nile virus using a ratio method to eliminate nonspecific reactivity. J Clin Lab Anal 22(5):362–266CrossRefGoogle Scholar
  6. 6.
    Verweij PE, Erjavec Z, Sluiters W, Goessens W, Rozenberg-Arska M, Debets-Ossenkopp YJ et al (1998) Detection of antigen in sera of patients with invasive aspergillosis: Intra- and interlaboratory reproducibility. J Clin Microbiol 36(6):1612–1616Google Scholar
  7. 7.
    Cass T, Toumazou, C (2006) State of Science Review: Biosensors and Biomarkers. In: Foresight Infectious Diseases: Preparing for the Future: Office of Science and Innovation, London.http://www.bis.gov.uk/assets/foresight/docs/infectious-diseases/s7.pdf. Accessed 12 Nov 2012
  8. 8.
    Tian Y, Madanahally K, Rao H, Mackwan R, Chen L (2010) Sample-to-result nucleic acid test enables accurate detection of Influenza A/2009 H1N1 in 26 min in near-patient settings. Europ Infect Dis 4(4):26–30Google Scholar
  9. 9.
    Hauck TS, Giri S, Gao Y, Chan WCW (2010) Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev 62(4–5):438–448CrossRefGoogle Scholar
  10. 10.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefGoogle Scholar
  11. 11.
    Moran MM, Guzman J, Henderson K, Abela-Oversteegan L, Wu L, Omune B, Gouglas, D, Chapman N, Zmundzki F (2011) Neglected disease research and development: Is the global financial crisis changing R&D? Global Funding of Innovation for Neglected Diseases.Google Scholar
  12. 12.
    Peeling RW, Holmes KK, Mabey D, Ronald A et al (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82(Supplement 5):v1–v6CrossRefGoogle Scholar
  13. 13.
    Mengelle C, Kamar N, Mansuy JM, Sandres-Saune K, Legrand-Abeavanel F, Miedouge M, Rostaing L, Izopet J (2011) JC virus DNA in the peripheral blood of renal transplant patients: a 1-year prospective follow-up in France. J Med Virol 83(1):132–136CrossRefGoogle Scholar
  14. 14.
    Liu C-J, Chen B-F, Chen P-J, Lai M-Y, Huang W-L, Horng K, Chen D-S (2006) Role of Hepatitis B Viral Load and Basal Core Promoter Mutation in Hepatocellular Carcinoma in Hepatitis B Carriers. J Infect Dis 193:1258–1265CrossRefGoogle Scholar
  15. 15.
    Lai SK, Wang Y-Y, Wirtz D, Hanes J (2009) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61:86–100CrossRefGoogle Scholar
  16. 16.
    Mairhofer J, Ropper K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9:4804–4823CrossRefGoogle Scholar
  17. 17.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRefGoogle Scholar
  18. 18.
    El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411CrossRefGoogle Scholar
  19. 19.
    Pappas D, Wang K (2007) Cellular separations: A review of new challenges in analytical chemistry. Anal Chim Acta 601(1):26–35CrossRefGoogle Scholar
  20. 20.
    Lu R, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500CrossRefGoogle Scholar
  21. 21.
    Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P (2010) Microfluidics without pumps: Reinventing the T-sensor and H-filter in paper networks. Lab Chip 10(20):2659–2665CrossRefGoogle Scholar
  22. 22.
    Namjilsuren T (2010) More developing countries show universal access to HIV/AIDS services is possible. World Health Organization [10 December 2010]; Available from: http://www.who.int/mediacentre/news/releases/2010/hiv_universal_access_20100928/en/index.html. Accessed 12 Nov 2012
  23. 23.
    Organization WH (1999) Operational characteristics of commerically available assays to determine antibodies to HIV-1 and/or HIV-2 in human sera. World Health OrganizationGoogle Scholar
  24. 24.
    Feardon M (2005) The laboratory diagnosis of HIV infections. Can J Infect Dis Med Microbiol 16(1):26–30Google Scholar
  25. 25.
    Cheng X, Gupta A, Chen C, Tompkins RG, Rodriguez W, Toner M (2009) Enchancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AODS diagnostics. Lab Chip 9:1357–1364CrossRefGoogle Scholar
  26. 26.
    Wang J-H, Wang C-H, Lin C-C, Lei H-Y, Lee G-B (2010) An integrated microfluidic system for counting of CD4+/CD8+ T lymphocytes. Microfluidics and Nanofluidics.Google Scholar
  27. 27.
    Chen GD, Alberts CJ, Rodriguez W, Toner M (2010) Concentration and Purification of Human Immunodeficiency Virus Type 1 Virions by Microfluidic Separation of Superparamagnetic Nanoparticles. Anal Chem 82(2):723–728CrossRefGoogle Scholar
  28. 28.
    Lee SH, Kim S-W, Kang J-Y, Ahn CH (2008) A polymer lab-on-a-chip for reverse transciption (RT)-PCR based point-of-care clinical diagnostics. Lab Chip 8:2121–2127CrossRefGoogle Scholar
  29. 29.
    Qiu X, Thompson JA, Chen Z, Liu C, Chen D, Ramprasad S, Mauk MG, Ongagna S, Barber C, Abrams WR, Malamud D, Corstjens PLAM, Bau HH (2009) Finger-actuated, self-contained immunoassay cassettes. Biomed Microdevices 11:1175–1186CrossRefGoogle Scholar
  30. 30.
    Public health research agenda for influenza A(H1N1) (2009) pandemic, World Health Organisation Technical Consultation Report, 2011, Tunisia, World Health Organisation http://whqlibdoc.who.int/hq/2011/WHO_HSE_GIP_ITP_2011.3_eng.pdf [Accessed 12 Nov 2012].
  31. 31.
    Kao LT-H, Shankar L, Kang TG, Zhang G, Tay GKI, Rafei SRM, Lee CWH (2011) Multiplexed detection and diffferentiation of the DNA strains for influenza A (H1N1 2009) using silicon-based microfluidic system. Biosens Bioelectron 26(5):2006–2011CrossRefGoogle Scholar
  32. 32.
    Bhattacharyya A, Klapperich CM (2008) Microfluidics-based extraction of viral RNA from infected mammalian cells for disposable molecular diagnostics. Sensors Actuators B-Chemical 129:693–698CrossRefGoogle Scholar
  33. 33.
    Reichmuth DS, Wang SK, Barrett LM, Throckmorton DJ, Einfeld W, Singh AK (2008) Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip 8:1319–1324CrossRefGoogle Scholar
  34. 34.
    Dengue and dengue haemorrhagic fever (2009) World Health Organization [December 2010]; Available from: http://www.who.int/mediacentre/factsheets/fs117/en/index.htmlAccessed 12 Nov 2012.
  35. 35.
    Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22:1739–1748CrossRefGoogle Scholar
  36. 36.
    Li C, Dong X, Qin J, Lin B (2009) Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device. Anal Chim Acta 640:93–99CrossRefGoogle Scholar
  37. 37.
    Marco A, Marin I (2009) CGIN1: A retroviral contribution to mammalian genomes. Mol Biol Evol 26(10):2167–2170CrossRefGoogle Scholar
  38. 38.
    Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T et al (2010) Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463(7277):84–87CrossRefGoogle Scholar
  39. 39.
    Gulliksen A, Solli LA, Drese KS, Sorensen O, Karlsen F, Rogne H, Hovig E, Sirevag R (2005) Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip 5:416–420CrossRefGoogle Scholar
  40. 40.
    Manage DP, Morrissey, Y.C., Stickel, A.J., Lauzon, J., Atrazhev, A., Acker, J.P., Pilarski, L.M. (2011) On-chip PCR amplification of genomic and viral templates in unprocessed whole blood Microfluidics and Nanofluidics 10(3):697–702Google Scholar
  41. 41.
    Gardner SD, Field AM, Coleman DV, Hulme B (1971) New human papovavirus (BK) isolated from urine after renal transplantation. Lancet 7712:1253–1257CrossRefGoogle Scholar
  42. 42.
    Zhu Y, Warrick JW, Haubert K, Beebe DJ, Yin J (2009) Infection on a chip: a microscle platform for simple and sensitive cell-based virus assays. Biomed Microdevices 11:565–570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  • Samantha M. Hattersley
    • 1
  • John Greenman
    • 1
  • Stephen J. Haswell
    • 2
    Email author
  1. 1.Postgraduate Medical InstituteUniversity of HullHullUK
  2. 2.Department of ChemistryUniversity of HullHullUK

Personalised recommendations