Superhydrophobicity for Antifouling Microfluidic Surfaces

  • N. J. Shirtcliffe
  • P. RoachEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 949)


Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or ­enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of ­polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol–gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials.

Key words

Superhydrophobicity Non-wettable Antifouling Protein adsorption 



The authors acknowledge financial support from EPSRC (grant EP/D500826/1).


  1. 1.
    Henderson JC, Yacopucci M, Chun CJ, Lenghaus K, Sommerhage F, Hickman JJ (2010) Investigation of the behaviour of serum and plasma in a microfluidics system. J Vac Sci Technol B 28(5):1066–1070CrossRefGoogle Scholar
  2. 2.
    Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic Lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315CrossRefGoogle Scholar
  3. 3.
    Saitoh T, Suzuki N, Furuse T, Hiraide M (2009) Heat induced solution mixing in thermo-responsive polymer-coated microchannels for the fluorometric determination of polyamines in saliva. Talanta 80(2):1012–1015CrossRefGoogle Scholar
  4. 4.
    Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleaic acid purification. Integr Biol 1(10):574–586CrossRefGoogle Scholar
  5. 5.
    Bearinger J, Terretaz S, Michel R, Tirelli N, Vogel H, Textor M, Hubbell J (2003) Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater 2:259–264CrossRefGoogle Scholar
  6. 6.
    Huber D, Manginell D, Samara M, Kim B, Bunker B (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301:352–354CrossRefGoogle Scholar
  7. 7.
    Taylor S, Smith S, Windle B, Guiseppi-Elie A (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res 31(16):e87CrossRefGoogle Scholar
  8. 8.
    Asuri P, Karajanagi S, Kane R, Dordick J (2007) Polymer-nanotube-enzyme composites as active antifouling films. Small 3(1):50–53CrossRefGoogle Scholar
  9. 9.
    Callow M, Fletcher R (1994) The influence of Low surface energy materials on bioadhesion—a review. Int Biodeterior Biodegrad 34:333–348CrossRefGoogle Scholar
  10. 10.
    Scardino AJ, Zhang H, Cookson DJ, Lamb RN, De Nys R (2009) The role of nano-roughness in antifouling. Biofouling 25(8):757–767CrossRefGoogle Scholar
  11. 11.
    Furstner R, Neinhuis C, Barthlott W (2000) The lotus effect: self-purification of microstructured surfaces, nachr. Chim 48(1):24–28Google Scholar
  12. 12.
    Wenzel R (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRefGoogle Scholar
  13. 13.
    Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  14. 14.
    Roach P, Shirtcliffe N, Newton M (2008) Progress in superhydrophobic surface development. Soft Matter 4:224–240CrossRefGoogle Scholar
  15. 15.
    Roach P, Shirtcliffe NJ, Farrar D, Perry CC (2006) Quantification of surface-bound proteins by fluorometric assay: comparison with quartz crystal microbalance and amido black assay. J Phys Chem B 110(41):20572–20579CrossRefGoogle Scholar
  16. 16.
    Sun T, Tan H, Han D, Fu Q, Jiang L (2005) No platelet Can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1(10):959–963CrossRefGoogle Scholar
  17. 17.
    Zhang H, Lamb R, Lewis J (2005) Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour. Sci Technol Adv Mater 6(3–4):236–239CrossRefGoogle Scholar
  18. 18.
    Toes G, van Muiswinkel K, van Oeveren W, Suurmeijer A, Timens W, Stokroos I, van den Dungen J (2002) Superhydrophobic modification fails to improve the performance of small diameter expanded polytetrafluoroethylene vascular grafts. Biomaterials 23(1):255–262CrossRefGoogle Scholar
  19. 19.
    Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22(5):339–360CrossRefGoogle Scholar
  20. 20.
    Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ (2008) Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab Chip 8:582–586CrossRefGoogle Scholar
  21. 21.
    Shirtcliffe N, Mchale G, Newton M, Perry C, Roach P (2005) Porous materials show superhydrophobic to superhydrophilic switching. Chem Commun 25:3135–3137CrossRefGoogle Scholar
  22. 22.
    Shirtcliffe N, McHale G, Newton M, Perry C, Roach P (2007) Superhydrophobic to superhydrophilic transitions of Sol–gel films for temperature. Alcohol or surfactant measurement. Mater Chem Phys 103(1):112–117CrossRefGoogle Scholar
  23. 23.
    Choi CH, Kim CJ (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96(6):066001CrossRefGoogle Scholar
  24. 24.
    Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97(4):044504CrossRefGoogle Scholar
  25. 25.
    Ou J, Rothstein J (2005) Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys Fluids 17(10):103606CrossRefGoogle Scholar
  26. 26.
    de Vasconcelos C, Bezerril P, Dantas T, Pereira M, Fonseca J (2007) Adsorption of bovine serum albumin on template-polymerized chitosan/poly(methacrylic acid) complexes. Langmuir 23(14):7687–7694CrossRefGoogle Scholar
  27. 27.
    Roach P, Farrar D, Perry C (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  1. 1.Biomimetic Materials, Hochschule Rhein-WaalRhine-Waal University of Applied SciencesKleveGermany
  2. 2.Institute for Science and Technology in MedicineKeele UniversityStaffordshireUK

Personalised recommendations