Skip to main content

Superhydrophobicity for Antifouling Microfluidic Surfaces

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or ­enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of ­polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol–gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Henderson JC, Yacopucci M, Chun CJ, Lenghaus K, Sommerhage F, Hickman JJ (2010) Investigation of the behaviour of serum and plasma in a microfluidics system. J Vac Sci Technol B 28(5):1066–1070

    Article  CAS  Google Scholar 

  2. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic Lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315

    Article  CAS  Google Scholar 

  3. Saitoh T, Suzuki N, Furuse T, Hiraide M (2009) Heat induced solution mixing in thermo-responsive polymer-coated microchannels for the fluorometric determination of polyamines in saliva. Talanta 80(2):1012–1015

    Article  CAS  Google Scholar 

  4. Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleaic acid purification. Integr Biol 1(10):574–586

    Article  CAS  Google Scholar 

  5. Bearinger J, Terretaz S, Michel R, Tirelli N, Vogel H, Textor M, Hubbell J (2003) Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater 2:259–264

    Article  CAS  Google Scholar 

  6. Huber D, Manginell D, Samara M, Kim B, Bunker B (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301:352–354

    Article  CAS  Google Scholar 

  7. Taylor S, Smith S, Windle B, Guiseppi-Elie A (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res 31(16):e87

    Article  Google Scholar 

  8. Asuri P, Karajanagi S, Kane R, Dordick J (2007) Polymer-nanotube-enzyme composites as active antifouling films. Small 3(1):50–53

    Article  CAS  Google Scholar 

  9. Callow M, Fletcher R (1994) The influence of Low surface energy materials on bioadhesion—a review. Int Biodeterior Biodegrad 34:333–348

    Article  CAS  Google Scholar 

  10. Scardino AJ, Zhang H, Cookson DJ, Lamb RN, De Nys R (2009) The role of nano-roughness in antifouling. Biofouling 25(8):757–767

    Article  CAS  Google Scholar 

  11. Furstner R, Neinhuis C, Barthlott W (2000) The lotus effect: self-purification of microstructured surfaces, nachr. Chim 48(1):24–28

    CAS  Google Scholar 

  12. Wenzel R (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  13. Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  14. Roach P, Shirtcliffe N, Newton M (2008) Progress in superhydrophobic surface development. Soft Matter 4:224–240

    Article  CAS  Google Scholar 

  15. Roach P, Shirtcliffe NJ, Farrar D, Perry CC (2006) Quantification of surface-bound proteins by fluorometric assay: comparison with quartz crystal microbalance and amido black assay. J Phys Chem B 110(41):20572–20579

    Article  CAS  Google Scholar 

  16. Sun T, Tan H, Han D, Fu Q, Jiang L (2005) No platelet Can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1(10):959–963

    Article  CAS  Google Scholar 

  17. Zhang H, Lamb R, Lewis J (2005) Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour. Sci Technol Adv Mater 6(3–4):236–239

    Article  CAS  Google Scholar 

  18. Toes G, van Muiswinkel K, van Oeveren W, Suurmeijer A, Timens W, Stokroos I, van den Dungen J (2002) Superhydrophobic modification fails to improve the performance of small diameter expanded polytetrafluoroethylene vascular grafts. Biomaterials 23(1):255–262

    Article  CAS  Google Scholar 

  19. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22(5):339–360

    Article  CAS  Google Scholar 

  20. Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ (2008) Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab Chip 8:582–586

    Article  CAS  Google Scholar 

  21. Shirtcliffe N, Mchale G, Newton M, Perry C, Roach P (2005) Porous materials show superhydrophobic to superhydrophilic switching. Chem Commun 25:3135–3137

    Article  Google Scholar 

  22. Shirtcliffe N, McHale G, Newton M, Perry C, Roach P (2007) Superhydrophobic to superhydrophilic transitions of Sol–gel films for temperature. Alcohol or surfactant measurement. Mater Chem Phys 103(1):112–117

    Article  CAS  Google Scholar 

  23. Choi CH, Kim CJ (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96(6):066001

    Article  Google Scholar 

  24. Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97(4):044504

    Article  Google Scholar 

  25. Ou J, Rothstein J (2005) Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys Fluids 17(10):103606

    Article  Google Scholar 

  26. de Vasconcelos C, Bezerril P, Dantas T, Pereira M, Fonseca J (2007) Adsorption of bovine serum albumin on template-polymerized chitosan/poly(methacrylic acid) complexes. Langmuir 23(14):7687–7694

    Article  Google Scholar 

  27. Roach P, Farrar D, Perry C (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from EPSRC (grant EP/D500826/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Shirtcliffe, N.J., Roach, P. (2013). Superhydrophobicity for Antifouling Microfluidic Surfaces. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics