Advertisement

Droplet-Based Microfluidics

  • Sanjiv SharmaEmail author
  • Monpichar Srisa-Art
  • Steven Scott
  • Amit Asthana
  • Anthony Cass
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 949)

Abstract

Droplet-based microfluidics or digital microfluidics is a subclass of microfluidic devices, wherein droplets are generated using active or passive methods. The active method for generation of droplets involves the use of an external factor such as an electric field for droplet generation. Two techniques that fall in this category are dielectrophoresis (DEP) and electrowetting on dielectric (EWOD). In passive methods, the droplet generation depends on the geometry and dimensions of the device. T-junction and flow focusing methods are examples of passive methods used for generation of droplets. In this chapter the methods used for droplet generation, mixing of contents of droplets, and the manipulation of droplets are described in brief. A review of the applications of digital microfluidics with emphasis on the last decade is presented.

Key words

Digital microfluidics Droplet microfluidics Electrowetting Dielectrophoresis Applications 

References

  1. 1.
    Terry SC (1975) Gas chromatography system fabricated on silicon wafer using integrated circuit technology. Stanford Electron Lab Tech Rep 4603:1–128Google Scholar
  2. 2.
    Manz A et al (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr A 593:253–258CrossRefGoogle Scholar
  3. 3.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  4. 4.
    Whitesides GM et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  5. 5.
    Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1CrossRefGoogle Scholar
  6. 6.
    Bessoth FG, deMello AJ, Manz A (1999)Microstructure for efficient continuous ­flowmixing. Anal Commun 36:213–215CrossRefGoogle Scholar
  7. 7.
    Gascoyne PRC et al (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309CrossRefGoogle Scholar
  8. 8.
    Gunther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503CrossRefGoogle Scholar
  9. 9.
    Malic L et al (2010) Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–431CrossRefGoogle Scholar
  10. 10.
    Teh SY et al (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRefGoogle Scholar
  11. 11.
    Huebner A et al (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254CrossRefGoogle Scholar
  12. 12.
    Guttenberg Z et al (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317CrossRefGoogle Scholar
  13. 13.
    Chen JZ et al (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97:014906–014909CrossRefGoogle Scholar
  14. 14.
    Lehmann U et al (2006) Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens Act B Chem 117:457–463CrossRefGoogle Scholar
  15. 15.
    Jones TB (2001) Liquid dielectrophoresis on the microscale. J Electrostatics 51–52:290–299CrossRefGoogle Scholar
  16. 16.
    Ahmed R, Jones TB (2006) Dispensing picoliter droplets on substrates using dielectrophoresis. J Electrostatics 64:543–549CrossRefGoogle Scholar
  17. 17.
    Jones TB et al (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448CrossRefGoogle Scholar
  18. 18.
    Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17:1052CrossRefGoogle Scholar
  19. 19.
    Wang KL et al (2007) Dynamic control of DEP actuation and droplet dispensing. J Micromech Microeng 17:76CrossRefGoogle Scholar
  20. 20.
    Lee J et al (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Act A Phys 95:259–268CrossRefGoogle Scholar
  21. 21.
    Sung Kwon C, Hyejin M, Chang-Jin K (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRefGoogle Scholar
  22. 22.
    Berthier J et al (2006) Computer aided design of an EWOD microdevice. Sens Act A Phys 127:283–294CrossRefGoogle Scholar
  23. 23.
    Roux J-M, Fouillet Y, Achard J-L (2007) 3D droplet displacement in microfluidic systems by electrostatic actuation. Sens Act A Phys 134:486–493CrossRefGoogle Scholar
  24. 24.
    Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4:265–277CrossRefGoogle Scholar
  25. 25.
    Jones TB (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443CrossRefGoogle Scholar
  26. 26.
    Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101CrossRefGoogle Scholar
  27. 27.
    Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619CrossRefGoogle Scholar
  28. 28.
    Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166CrossRefGoogle Scholar
  29. 29.
    Garstecki P et al (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2651CrossRefGoogle Scholar
  30. 30.
    Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127:13854–13861CrossRefGoogle Scholar
  31. 31.
    Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Act B Chem 114:350–356CrossRefGoogle Scholar
  32. 32.
    Yobas L et al (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079CrossRefGoogle Scholar
  33. 33.
    Holtze C et al (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–1639CrossRefGoogle Scholar
  34. 34.
    Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  35. 35.
    Woodward A et al (2007) Monodisperse emulsions from a microfluidic device, characterised by diffusion NMR. Soft Matter 3:627–633CrossRefGoogle Scholar
  36. 36.
    Chun-Hong L et al (2007) A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J Micromech Microeng 17:1121CrossRefGoogle Scholar
  37. 37.
    Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446CrossRefGoogle Scholar
  38. 38.
    Xu JH et al (2006) Formation of monodisperse microbubbles in a microfluidic device. AIchE J 52:2254–2259CrossRefGoogle Scholar
  39. 39.
    Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87:274501CrossRefGoogle Scholar
  40. 40.
    Hettiarachchi K et al (2007) On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7:463–468CrossRefGoogle Scholar
  41. 41.
    Tice JD et al (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19:9127–9133CrossRefGoogle Scholar
  42. 42.
    Okushima S et al (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908CrossRefGoogle Scholar
  43. 43.
    Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101:23–29CrossRefGoogle Scholar
  44. 44.
    Nisisako T (2008) Microstructured devices for preparing controlled multiple emulsions. Chem Eng Technol 31:1091–1098CrossRefGoogle Scholar
  45. 45.
    Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:768–772CrossRefGoogle Scholar
  46. 46.
    Bringer MR et al (2004) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil Trans Roy Soc Lond Ser A Math Phys Eng Sci 362:1087–1104CrossRefGoogle Scholar
  47. 47.
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356CrossRefGoogle Scholar
  48. 48.
    Ismagilov RF et al (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378CrossRefGoogle Scholar
  49. 49.
    Muradoglu M, Stone HA (2005) Mixing in a drop moving through a serpentine channel: a computational study. Phys Fluids 17:073305–073309CrossRefGoogle Scholar
  50. 50.
    Liau A et al (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77:7618–7625CrossRefGoogle Scholar
  51. 51.
    Wheeler AR et al (2004) Electrowetting-on-dielectric for analysis of peptides and proteins by matrix assisted laser desorption/ionization mass spectrometry. Am Chem Soc 228:U33Google Scholar
  52. 52.
    Paik P et al (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33CrossRefGoogle Scholar
  53. 53.
    Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259CrossRefGoogle Scholar
  54. 54.
    Link DR et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed Engl 45:2556–2560CrossRefGoogle Scholar
  55. 55.
    Priest C, Herminghaus S, Seemann R. (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88Google Scholar
  56. 56.
    Ahn K et al (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105CrossRefGoogle Scholar
  57. 57.
    Ahn K et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88:024104-1-024104-3CrossRefGoogle Scholar
  58. 58.
    Priest C, Herminghaus S, Seemann R (2006) Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl Phys Lett 89:134101CrossRefGoogle Scholar
  59. 59.
    Wang J, Lu C (2006) Microfluidic cell fusion under continuous direct current voltage. Appl Phys Lett 89:234102–234103CrossRefGoogle Scholar
  60. 60.
    Singh P, Aubry N (2007) Transport and deformation of droplets in a microdevice using dielectrophoresis. Electrophoresis 28:644–657CrossRefGoogle Scholar
  61. 61.
    Tresset G, Takeuchi S (2005) Utilization of cell-sized lipid containers for nanostructure and macromolecule handling in microfabricated devices. Anal Chem 77:2795–2801CrossRefGoogle Scholar
  62. 62.
    Kohler JM et al (2004) Digital reaction technology by micro segmented flow—components, concepts and applications. Chem Eng J 101:201–216CrossRefGoogle Scholar
  63. 63.
    Lorenz RM et al (2006) Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets. Anal Chem 78:6433–6439CrossRefGoogle Scholar
  64. 64.
    Tan Y-C et al (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298CrossRefGoogle Scholar
  65. 65.
    Tan YC, Ho YL, Lee AP (2008) Microfluidic sorting of droplets by size. Microfluidics Nanofluidics 4:343–348CrossRefGoogle Scholar
  66. 66.
    Bremond N et al (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501CrossRefGoogle Scholar
  67. 67.
    Niu X et al (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841CrossRefGoogle Scholar
  68. 68.
    Fidalgo LM, Abell C, Huck WTS (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7:984–986CrossRefGoogle Scholar
  69. 69.
    Adamson DN et al (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6:1178–1186CrossRefGoogle Scholar
  70. 70.
    Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503CrossRefGoogle Scholar
  71. 71.
    De Menech M (2006) Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Phys Rev E 73:031505CrossRefGoogle Scholar
  72. 72.
    Menetrier-Deremble L, Tabeling P (2006) Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E 74:035303CrossRefGoogle Scholar
  73. 73.
    Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRefGoogle Scholar
  74. 74.
    Ting TH et al (2006) Thermally mediated breakup of drops in microchannels. Appl Phys Lett 89:234101–234101-3CrossRefGoogle Scholar
  75. 75.
    Tan YC, Lee AP (2005) Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system. Lab Chip 5:1178–1183CrossRefGoogle Scholar
  76. 76.
    Choi S, Park J-K (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5:1161–1167CrossRefGoogle Scholar
  77. 77.
    Li Y et al (2007) Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7:239–248CrossRefGoogle Scholar
  78. 78.
    Cho SK, Zhao YJ, Kim CJ (2007) Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab Chip 7:490–498CrossRefGoogle Scholar
  79. 79.
    Baroud CN et al (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75:046302CrossRefGoogle Scholar
  80. 80.
    Clausell-Tormos J et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437CrossRefGoogle Scholar
  81. 81.
    Zheng B, Ismagilov RF (2005) A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem Int Ed 44:2520–2523CrossRefGoogle Scholar
  82. 82.
    Dittrich PS, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. Chembiochem 6:811–814CrossRefGoogle Scholar
  83. 83.
    Courtois F et al (2008) An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Chembiochem 9:439–446CrossRefGoogle Scholar
  84. 84.
    Chen DLL et al (2007) Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria to identify the third liquid and validation with protein crystallization. Langmuir 23:2255–2260CrossRefGoogle Scholar
  85. 85.
    Li L, Boedicker JQ, Ismagilov RF (2007) Using a multijunction microfluidic device to inject substrate into an array of preformed plugs without cross-contamination: comparing theory and experiments. Anal Chem 79:2756–2761CrossRefGoogle Scholar
  86. 86.
    Boedicker JQ et al (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272CrossRefGoogle Scholar
  87. 87.
    Lin YQ et al (2008) Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 80:8045–8054CrossRefGoogle Scholar
  88. 88.
    Edd JF et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264CrossRefGoogle Scholar
  89. 89.
    Huebner A et al (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80:3890–3896CrossRefGoogle Scholar
  90. 90.
    Chabert M, Viovy J-L (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci 105:3191–3196CrossRefGoogle Scholar
  91. 91.
    Koster S et al (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115CrossRefGoogle Scholar
  92. 92.
    Chu L-Y et al (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46:8970–8974CrossRefGoogle Scholar
  93. 93.
    Shah RK et al (2008) Designer emulsions using microfluidics. Mater Today 11:18–27CrossRefGoogle Scholar
  94. 94.
    Nisisako TT, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1:23–27CrossRefGoogle Scholar
  95. 95.
    Utada AS et al (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541CrossRefGoogle Scholar
  96. 96.
    Lorenceau E et al (2005) Generation of polymerosomes from double-emulsions. Langmuir 21:9183–9186CrossRefGoogle Scholar
  97. 97.
    Shum HC, Kim J-W, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549CrossRefGoogle Scholar
  98. 98.
    Shum HC et al (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653CrossRefGoogle Scholar
  99. 99.
    Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater 20:3498–3503CrossRefGoogle Scholar
  100. 100.
    Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125:11170–11171CrossRefGoogle Scholar
  101. 101.
    Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76:4977–4982CrossRefGoogle Scholar
  102. 102.
    Zheng B, Tice JD, Ismagilov RF (2004) Formation of arrayed droplets of soft lithography and two-phase fluid flow, and application in protein crystallization. Adv Mater 16:1365–1368CrossRefGoogle Scholar
  103. 103.
    Zheng B et al (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed 43:2508–2511CrossRefGoogle Scholar
  104. 104.
    Chen DL, Gerdts CJ, Ismagilov RF (2005) Using microfluidics to observe the effect of mixing on nucleation of protein crystals. J Am Chem Soc 127:9672–9673CrossRefGoogle Scholar
  105. 105.
    Gerdts CJ et al (2006) Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew Chem Int Ed 45:8156–8160CrossRefGoogle Scholar
  106. 106.
    Yadav MK et al (2005) In situ data collection and structure refinement from microcapillary protein crystallization. J Appl Crystallogr 38:900–905CrossRefGoogle Scholar
  107. 107.
    Li L et al (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. P Natl Acad Sci U S A 103:19243–19248CrossRefGoogle Scholar
  108. 108.
    Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321CrossRefGoogle Scholar
  109. 109.
    Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701CrossRefGoogle Scholar
  110. 110.
    Seo M et al (2005) Continuous microfluidic reactors for polymer particles. Langmuir 21:11614–11622CrossRefGoogle Scholar
  111. 111.
    Dendukuri D et al (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116CrossRefGoogle Scholar
  112. 112.
    Kobayashi I, Uemura K, Nakajima M (2006) Controlled generation of monodisperse ­discoid droplets using microchannel arrays. Langmuir 22:10893–10897CrossRefGoogle Scholar
  113. 113.
    Groß GA et al (2007) Formation of polymer and nanoparticle doped polymer minirods by use of the microsegmented flow principle. Chem Eng Technol 30:341–346CrossRefGoogle Scholar
  114. 114.
    Nisisako T et al (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156CrossRefGoogle Scholar
  115. 115.
    Shepherd RF et al (2006) Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22:8618–8622CrossRefGoogle Scholar
  116. 116.
    Xu S et al (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44:3799CrossRefGoogle Scholar
  117. 117.
    De Geest BG et al (2005) Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir 21:10275–10279CrossRefGoogle Scholar
  118. 118.
    Yang C-H, Huang K-S, Chang J-Y (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9:253–259CrossRefGoogle Scholar
  119. 119.
    Zourob M et al (2006) A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip 6:296–301CrossRefGoogle Scholar
  120. 120.
    Lewis PC et al (2005) Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules 38:4536–4538CrossRefGoogle Scholar
  121. 121.
    Carroll NJ et al (2008) Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir 24:658–661CrossRefGoogle Scholar
  122. 122.
    Huang K-S, Lai T-H, Lin Y-C (2006) Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6:954–957CrossRefGoogle Scholar
  123. 123.
    Zhang H et al (2006) Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 128:12205–12210CrossRefGoogle Scholar
  124. 124.
    Choi CH et al (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9:855–862CrossRefGoogle Scholar
  125. 125.
    Tan J et al (2008) Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem Eng J 136:306–311CrossRefGoogle Scholar
  126. 126.
    Hatakeyama T, Chen DL, Ismagilov RF (2006) Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J Am Chem Soc 128:2518–2519CrossRefGoogle Scholar
  127. 127.
    Cygan ZT et al (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21:3629–3634CrossRefGoogle Scholar
  128. 128.
    Barnes SE et al (2006) Raman spectroscopic monitoring of droplet polymerization in a microfluidic device. Analyst 131:1027–1033CrossRefGoogle Scholar
  129. 129.
    Hung LH, Lin R, Lee AP (2008) Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Lab Chip 8:983–987CrossRefGoogle Scholar
  130. 130.
    Gerdts CJ, Sharoyan DE, Ismagilov RF (2004) A synthetic reaction network: chemical amplification using nonequilibrium autocatalytic reactions coupled in time. J Am Chem Soc 126:6327–6331CrossRefGoogle Scholar
  131. 131.
    Chen H et al (2005) Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab Chip 5:719–725CrossRefGoogle Scholar
  132. 132.
    Shen H, Fang Q, Fang ZL (2006) A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection. Lab Chip 6:1387–1389CrossRefGoogle Scholar
  133. 133.
    Kumemura M, Korenaga T (2006) Quantitative extraction using flowing nano-liter droplet in microfluidic system. Anal Chim Acta 558:75–79CrossRefGoogle Scholar
  134. 134.
    Mary P, Studer V, Tabeling P (2008) Microfluidic droplet-based liquid-liquid extraction. Anal Chem 80:2680–2687CrossRefGoogle Scholar
  135. 135.
    Wang WH et al (2007) Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere. Langmuir 23:11924–11931CrossRefGoogle Scholar
  136. 136.
    Park N, Kim S, Hahn JH (2003) Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal Chem 75:6029–6033CrossRefGoogle Scholar
  137. 137.
    Obeid PJ et al (2002) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295CrossRefGoogle Scholar
  138. 138.
    Obeid PJ, Christopoulos TK (2003) Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection. Anal Chim Acta 494:1–9CrossRefGoogle Scholar
  139. 139.
    Kolari K et al (2008) Real-time analysis of PCR inhibition on microfluidic materials. Sens Act B Chem 128:442–449CrossRefGoogle Scholar
  140. 140.
    Beer NR et al (2007) On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem 79:8471–8475CrossRefGoogle Scholar
  141. 141.
    Beer NR et al (2008) On-chip single-copy real-time reverse-transcription PCR in ­isolated picoliter droplets. Anal Chem 80:1854–1858CrossRefGoogle Scholar
  142. 142.
    Tsuchiya H et al (2008) On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system. Sens Act B Chem 130:583–588CrossRefGoogle Scholar
  143. 143.
    Kiss MM et al (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80:8975–8981CrossRefGoogle Scholar
  144. 144.
    Schaerli Y et al (2008) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81:302–306CrossRefGoogle Scholar
  145. 145.
    Sista R et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104CrossRefGoogle Scholar
  146. 146.
    Chang Y-H et al (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225CrossRefGoogle Scholar
  147. 147.
    Chabert M et al (2006) Automated microdroplet platform for sample manipulation and polymerase chain reaction. Anal Chem 78:7722–7728CrossRefGoogle Scholar
  148. 148.
    Kumaresan P et al (2008) High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80:3522–3529CrossRefGoogle Scholar
  149. 149.
    Hua Z et al (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316CrossRefGoogle Scholar
  150. 150.
    Henkel T et al (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101:439–445CrossRefGoogle Scholar
  151. 151.
    Song H et al (2006) On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 78:4839–4849CrossRefGoogle Scholar
  152. 152.
    Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150CrossRefGoogle Scholar
  153. 153.
    Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315CrossRefGoogle Scholar
  154. 154.
    Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315:832–835CrossRefGoogle Scholar
  155. 155.
    Fuerstman MJ, Garstecki P, Whitesides GM (2007) Coding/decoding and reversibility of droplet trains in microfluidic networks. Science 315:828–832CrossRefGoogle Scholar
  156. 156.
    Epstein IR (2007) Can droplets and bubbles think? Science 315:775–776CrossRefGoogle Scholar
  157. 157.
    Lee W et al (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci 107:22413–22418CrossRefGoogle Scholar
  158. 158.
    Cheow LF, Yobas L, Kwong D-L (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett 90:054107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  • Sanjiv Sharma
    • 1
    Email author
  • Monpichar Srisa-Art
    • 2
  • Steven Scott
    • 1
  • Amit Asthana
    • 3
  • Anthony Cass
    • 1
  1. 1.Institute of Biomedical Engineering & Department of ChemistryImperial CollegeLondonUK
  2. 2.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Centre for Cellular and Molecular Biology, Council of Scientific and Industrial ResearchHyderabadIndia

Personalised recommendations