Skip to main content

Glass Microstructure Capping and Bonding Techniques

  • Protocol
  • First Online:
Book cover Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

The capping of microfluidic features fabricated in glass substrates is achievable by various technological methods. Of the entire spectrum of possibilities (gluing, glass bonding via intermediate layers, pressure or plasma-assisted glass bonding, etc.) a detailed description of three techniques is presented here. The first is a low temperature PDMS-glass adhesion bonding, the second is medium temperature pressure assisted glass–glass bonding, and finally, high temperature glass–glass fusion bonding. All these protocols allow completion of the manufacturing process for a fully enclosed microfluidic chip. Nevertheless, as they are complementary rather than competing methods, they effectively extend the range of tools available to fabricate lab-on-a-chip microdevices. Each has its own merits and each could feasibly be used at different developmental stages of a given microfluidic device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plecis A, Chen Y (2008) Improved glass–PDMS–glass device technology for accurate measurements of electro-osmotic mobilities. Microelectron Eng 85:1334–1336

    Article  CAS  Google Scholar 

  2. Chang JK, Bang H, Park S-J et al (2003) Fabrication of the PDMS microchip for serially diluting sample with buffer. Microsyst Technol 9:555–558

    Article  CAS  Google Scholar 

  3. Oh KW, Han A, Bhansali S et al (2002) A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems. J Micromech Microeng 12:187–191

    Article  CAS  Google Scholar 

  4. Zhou X, Poenar DP, Liu KY et al (2007) Glass-based BioMEMS devices for optically excited cell impedance measurement. Sensor Actuat A 133:301–310

    Article  Google Scholar 

  5. Wilke R, Büttgenbach S (2003) A micromachined capillary electrophoresis chip with fully integrated electrodes for separation and electrochemical detection. Biosens Bioelectron 19:149–153

    Article  CAS  Google Scholar 

  6. Mazurczyk R, Vieillard J, Bouchard A, Hannes B, Krawczyk S (2006) A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice. Sensor Actuat B 118:11–19

    Article  Google Scholar 

  7. Vieillard J, Mazurczyk R, Morin C, Hannes B, Chevolot Y, Desbène P-L, Krawczyk S (2007) Application of microfluidic chip with integrated optics for electrophoretic separations of proteins. J Chromatogr B 845:218–225

    Article  CAS  Google Scholar 

  8. Chiem N, Lockyear-Shultz L, Andersson P et al (2000) Room temperature bonding of micromachined glass devices for capillary electrophoresis. Sensor Actuat B 63:147–152

    Article  Google Scholar 

  9. Jia Z-J, Fang Q, Fang Z-L (2004) Bonding of glass microfluidic chips at room temperatures. Anal Chem 76:5597–5602

    Article  CAS  Google Scholar 

  10. Bhattacharya S, Gao Y, Korampally V et al (2007) Mechanics of plasma exposed spin-on-glass (SOG) and polydimethyl siloxane (PDMS) surfaces and their impact on bond strength. Appl Surf Sci 253:4220–4225

    Article  CAS  Google Scholar 

  11. Zhang M, Zhao J, Gao L (2008) Glass wafers bonding via Diels-Alder reaction at mild temperature. Sensor Actuat A 141:213–216

    Article  Google Scholar 

  12. Sayah A, Solignac D, Cueni T et al (2000) Development of novel low temperature bonding technologies for microchip chemical analysis applications. Sensor Actuat 84:103–108

    Article  Google Scholar 

  13. Iles A, Oki A, Pamme N (2007) Bonding of soda-lime glass microchips at low temperature. Microfluid Nanofluid 3:119–122

    Article  CAS  Google Scholar 

  14. Stjernström M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38

    Article  Google Scholar 

  15. Fu L-M, Yang R-J, Lee G-B (2003) Electrokinetic focusing injection methods on microfluidic devices. Anal Chem 75:1905–1910

    Article  CAS  Google Scholar 

  16. Mao P, Han J (2005) Fabrication and characterisation of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844

    Article  CAS  Google Scholar 

  17. Plöbl A, Kräuter G (1999) Wafer direct bonding: tailoring adhesion between brittle materials. Mater Sci Eng R25:1–88

    Google Scholar 

  18. Vallin Ö, Jonsson K, Lindberg U (2005) Adhesion quantification methods for wafer bonding. Mater Sci Eng R 50:109–165

    Article  Google Scholar 

  19. Holden M, Kumar S, Castellana E et al (2003) Generating fixed concentration arrays in a microfluidic device. Sensor Actuat B 92:199–207

    Article  Google Scholar 

  20. Gueguen P, Ventosa C, Di Cioccio L et al (2010) Physics of direct bonding: applications to 3D heterogeneous or monolithic integration. Microelectron Eng 87:477–484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslaw Mazurczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Mazurczyk, R., Mansfield, C.D., Lygan, M. (2013). Glass Microstructure Capping and Bonding Techniques. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics