Present Technology and Future Trends in Point-of-Care Microfluidic Diagnostics

  • Lawrence KulinskyEmail author
  • Zahra Noroozi
  • Marc Madou
Part of the Methods in Molecular Biology book series (MIMB, volume 949)


This work reviews present technologies and developing trends in Point-of-Care (POC) microfluidic diagnostics platforms. First, various fluidics technologies such as pressure-driven flows, capillary flows, electromagnetically driven flows, centrifugal fluidics, acoustically driven flows, and droplet fluidics are categorized. Then three broad categories of POC microfluidic testing devices are considered: lateral flow devices, desktop and handheld POC diagnostic platforms, and emergent molecular diagnostic POC systems. Such evolving trends as miniaturization, multiplexing, networking, new more sensitive detection schemes, and the importance of sample processing are discussed. It is concluded that POC microfluidic diagnostics has a potential to improve patient treatment outcome and bring substantial savings in overall healthcare costs.

Key words

Point of care POC POCT Microfluidics Diagnostics Lateral flow Molecular diagnostics Immunoassay 



This work was supported by the National Science Foundation grants ECCS-0801792 and NIRT-0709085, National Institute of Health grant 1 R01 AIO89541-01, and UC Lab Fees Award 09-LR-09-117362 and sponsored by World Class University (WCU) program (R32-2008-000-20054-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.


  1. 1.
    Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca Raton, FLGoogle Scholar
  2. 2.
    Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182CrossRefGoogle Scholar
  3. 3.
    Tudos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95CrossRefGoogle Scholar
  4. 4.
    Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582CrossRefGoogle Scholar
  5. 5.
    Nghe P, Terriac E, Schneider M, Li ZZ, Cloitre M, Abecassis B, Tabeling P (2011) Microfluidics and complex fluids. Lab Chip 11:788–794CrossRefGoogle Scholar
  6. 6.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977CrossRefGoogle Scholar
  7. 7.
    Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110CrossRefGoogle Scholar
  8. 8.
    Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907CrossRefGoogle Scholar
  9. 9.
    Point of Care Diagnostic Testing World Markets (2012) TriMark Publications, LLC Accessed 12 Nov 2012
  10. 10.
    Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35CrossRefGoogle Scholar
  11. 11.
    Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sensor Actuat B Chem 130: 917–942CrossRefGoogle Scholar
  12. 12.
    West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80:4403–4419CrossRefGoogle Scholar
  13. 13.
    Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516CrossRefGoogle Scholar
  14. 14.
    Nam-Trung N, Zhigang W (2005) Micromixers—a review. J Micromech Microeng 15:R1CrossRefGoogle Scholar
  15. 15.
    Tekin H, Sivagnanam V, Ciftlik A, Sayah A, Vandevyver C, Gijs M (2011) Chaotic mixing using source–sink microfluidic flows in a PDMS chip. Microfluid Nanofluid 10:749–759CrossRefGoogle Scholar
  16. 16.
    Casadevall i Solvas X, Lambert RA, Kulinsky L, Rangel RH, Madou MJ (2009) Au/PPy actuators for active micromixing and mass transport enhancement. Micro Nanosyst 1:2–11Google Scholar
  17. 17.
    Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651CrossRefGoogle Scholar
  18. 18.
    Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sensor Actuat B Chem 92:315–325CrossRefGoogle Scholar
  19. 19.
    Yi C, Li C-W, Ji S, Yang M (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23CrossRefGoogle Scholar
  20. 20.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRefGoogle Scholar
  21. 21.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584CrossRefGoogle Scholar
  22. 22.
    Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628CrossRefGoogle Scholar
  23. 23.
    Abi-Samra K, Hanson R, Madou M, Gorkin Iii RA (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11:723–726CrossRefGoogle Scholar
  24. 24.
    Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773CrossRefGoogle Scholar
  25. 25.
    Jens D et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103CrossRefGoogle Scholar
  26. 26.
    Gaudioso J, Craighead HG (2002) Characterizing electroosmotic flow in microfluidic devices. J Chromatogr A 971:249–253CrossRefGoogle Scholar
  27. 27.
    Dolnik V, Liu S (2005) Applications of capillary electrophoresis on microchip. J Sep Sci 28:1994–2009CrossRefGoogle Scholar
  28. 28.
    Bousse L, Cohen C, Nikiforov T, Chow A, Kopf-Sill AR, Dubrow R, Parce JW (2000) Electrokinetically controlled microfluidic analysis systems. Annu Rev Biophys Biomol Struct 29:155–181CrossRefGoogle Scholar
  29. 29.
    Hunt TP, Issadore D, Westervelt RM (2008) Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip 8:81–87CrossRefGoogle Scholar
  30. 30.
    Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensor Actuat A Phys 95:259–268CrossRefGoogle Scholar
  31. 31.
    Ali B, Nam-Trung N (2010) Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. J Micromech Microeng 20:015018CrossRefGoogle Scholar
  32. 32.
    Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3:012002–012023CrossRefGoogle Scholar
  33. 33.
    Wixforth A (2006) Acoustically driven programmable microfluidics for biological and chemical applications. J Assoc Lab Auto 11:399–405CrossRefGoogle Scholar
  34. 34.
    Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–1581CrossRefGoogle Scholar
  35. 35.
    Shum HC, Bandyopadhyay A, Bose S, Weitz DA (2009) Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem Mater 21:5548–5555CrossRefGoogle Scholar
  36. 36.
    Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925CrossRefGoogle Scholar
  37. 37.
    Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRefGoogle Scholar
  38. 38.
    Casadevall i Solvas X, deMello A (2011) Droplet microfluidics: recent developments and future applications. Chem Commun 47:1936–1942Google Scholar
  39. 39.
    Kennedy L, Herman WH (2005) Glycated hemoglobin assessment in clinical practice: comparison of the A1cNow™ point-of-care device with central laboratory testing (GOAL A1C study). Diabetes Technol Ther 7:907–912CrossRefGoogle Scholar
  40. 40.
    Brooks DE, Devine DV, Harris PC, Harris JE, Miller ME, Olal AD, Spiller LJ, Xie ZC (1999) RAMPTM: a rapid quantitative whole blood immunochromatographic platform for point-of-care testing. Clin Chem 45:1676–1678Google Scholar
  41. 41.
    Mens PF, van Amerongen A, Sawa P, Kager PA, Schallig HDFH (2008) Molecular diagnosis of malaria in the field: development of a novel 1-step nucleic acid lateral flow immunoassay for the detection of all 4 human Plasmodium spp. and its evaluation in Mbita, Kenya. Diagn Microbiol Infect Dis 61:421–427CrossRefGoogle Scholar
  42. 42.
    Blažková M, Koets M, Rauch P, van Amerongen A (2009) Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. Eur Food Res Technol 229:867–874CrossRefGoogle Scholar
  43. 43.
    Assadollahi S, Reininger C, Palkovits R, Pointl P, Schalkhammer T (2009) From lateral flow devices to a novel nano-color microfluidic assay. Sensors 9:6084–6100CrossRefGoogle Scholar
  44. 44.
    Rudolf Seitz W (1984) Immunoassay labels based on chemiluminescence and bioluminescence. Clin Biochem 17:120–125CrossRefGoogle Scholar
  45. 45.
    Corstjens P, Zuiderwijk M, Brink A, Li S, Feindt H, Niedbala RS, Tanke H (2001) Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive dna test to identify human papillomavirus type 16 infection. Clin Chem 47:1885–1893Google Scholar
  46. 46.
    Chu X, Fu X, Chen K, Shen G-L, Yu R-Q (2005) An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens Bioelectron 20:1805–1812CrossRefGoogle Scholar
  47. 47.
    von Lode P (2005) Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin Biochem 38:591–606CrossRefGoogle Scholar
  48. 48.
    Kupstat A, Kumke MU, Hildebrandt N (2011) Toward sensitive, quantitative point-of-care testing (POCT) of protein markers: miniaturization of a homogeneous time-resolved fluoroimmunoassay for prostate-specific antigen detection. Analyst 136:1029–1035CrossRefGoogle Scholar
  49. 49.
    Tisone TC, O’Farrell B (2009) Manufacturing the next generation of highly sensitive and reproducible lateral flow immunoassay. In: Wong R, Tse H (eds) Lateral flow immunoassay. Humana Press, New York, pp 1–26Google Scholar
  50. 50.
    Pugia MJ, Blankenstein G, Peters R-P, Profitt JA, Kadel K, Willms T, Sommer R, Kuo HH, Schulman LS (2005) Microfluidic tool box as technology platform for hand-held diagnostics. Clin Chem 51:1923–1932CrossRefGoogle Scholar
  51. 51.
    Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321:1–10CrossRefGoogle Scholar
  52. 52.
    Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Hay Burgess DC (2006) Requirements for high impact diagnostics in the developing world. Nature 444:3–8Google Scholar
  53. 53.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefGoogle Scholar
  54. 54.
    Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem TRAC 28:925–942CrossRefGoogle Scholar
  55. 55.
    Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105:19606–19611CrossRefGoogle Scholar
  56. 56.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRefGoogle Scholar
  57. 57.
    Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934CrossRefGoogle Scholar
  58. 58.
    Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165CrossRefGoogle Scholar
  59. 59.
    Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105:19606–19611CrossRefGoogle Scholar
  60. 60.
    Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150CrossRefGoogle Scholar
  61. 61.
    Connelly NR, Magee M, Kiessling B (1996) The use of the iSTAT portable analyzer in patients undergoing cardiopulmonary bypass. J Clin Monit 12:311–315CrossRefGoogle Scholar
  62. 62.
    Papadea C, Foster J, Grant S, Ballard SA, Cate JC IV, Southgate WM, Purohit DM (2002) Evaluation of the i-STAT portable clinical analyzer for point-of-care blood testing in the intensive care units of a University Children’s Hospital. Ann Clin Lab Sci 32:231–243Google Scholar
  63. 63.
    Sykes E, Karcher RE, Eisenstadt J, Tushman DA, Balasubramaniam M, Gusway J, Peterson VJ (2005) Analytical relationships among biosite, Bayer, and Roche methods for BNP and NT-proBNP. Am J Clin Pathol 123:584–590CrossRefGoogle Scholar
  64. 64.
    Cosmi B, Palareti G, Carpanedo M, Pengo V, Biasiolo A, Rampazzo P, Morstabilini G, Testa S (2000) Assessment of patient capability to self-adjust oral anticoagulant dose: a multicenter study on home use of portable prothrombin time monitor (COAGUCHECK). Haematologica, 85: 826 Accessed 12 Nov 2012
  65. 65.
    Guy M, Newall R, Borzomato J, Kalra PA, Price C (2009) Diagnostic accuracy of the urinary albumin: creatinine ratio determined by the CLINITEK Microalbumin and DCA 2000+ for the rule-out of albuminuria in chronic kidney disease. Clinica Chimica Acta, 399: 54-58 Accessed 12 Nov 2012
  66. 66.
    Schembri C, Ostoich V, Lingane P, Burd T, Buhl S (1992) Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing. Clin Chem 38:1665–1670Google Scholar
  67. 67.
    Inganas M, Derand H, Eckersten A, Ekstrand G, Honerud A-K, Jesson G, Thorsen G, Soderman T, Andersson P (2005) Integrated microfluidic compact disc device with potential use in both centralized and point-of-care laboratory settings. Clin Chem 51:1985–1987CrossRefGoogle Scholar
  68. 68.
    Honda N, Lindberg U, Andersson P, Hoffmann S, Takei H (2005) Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force. Clin Chem 51:1955–1961CrossRefGoogle Scholar
  69. 69.
    Lee BS, Lee JN, Park JM, Lee JG, Kim S, Cho YK, Ko C (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555CrossRefGoogle Scholar
  70. 70.
    Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducree J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044CrossRefGoogle Scholar
  71. 71.
    Haeberle S, Brenner T, Zengerle R, Ducre J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6:776CrossRefGoogle Scholar
  72. 72.
    Kido H, Micic M, Smith D, Zoval J, Norton J, Madou M (2007) A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf B Biointerfaces 58:44–51CrossRefGoogle Scholar
  73. 73.
    Siegrist J, Gorkin R, Bastien M, Stewart G, Peytavi R, Kido H, Bergeron M, Madou M (2010) Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10:363–371CrossRefGoogle Scholar
  74. 74.
    Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847CrossRefGoogle Scholar
  75. 75.
    Abgrall P, Gué AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17:R15CrossRefGoogle Scholar
  76. 76.
    Vandaveer WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25:3528–3549CrossRefGoogle Scholar
  77. 77.
    Vrouwe EX, Luttge R, Vermes I, van den Berg A (2007) Microchip capillary electrophoresis for point-of-care analysis of lithium. Clin Chem 53:117–123CrossRefGoogle Scholar
  78. 78.
    Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613Google Scholar
  79. 79.
    Zhang H, Meyerhoff ME (2005) Gold-coated magnetic particles for solid-phase immunoassays: enhancing immobilized antibody binding efficiency and analytical performance. Anal Chem 78:609–616CrossRefGoogle Scholar
  80. 80.
    Nicu L, Leïchlé T (2008) Biosensors and tools for surface functionalization from the macro- to the nanoscale: the way forward. J Appl Phys 104:111101CrossRefGoogle Scholar
  81. 81.
    Leca-Bouvier B, Blum LJ (2005) Biosensors for protein detection: a review. Anal Lett 38:1491–1517CrossRefGoogle Scholar
  82. 82.
    Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photon 1:106–114CrossRefGoogle Scholar
  83. 83.
    Erickson D (2010) Optofluidics. In: Kakaç S, Kosoy B, Li D, Pramuanjaroenkij A (eds) Microfluidics based microsystems. Springer, Netherlands, pp 529–551Google Scholar
  84. 84.
    Yu X, Xu D, Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6:5493–5503CrossRefGoogle Scholar
  85. 85.
    Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U, Heath J (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10:3157–3162CrossRefGoogle Scholar
  86. 86.
    Blick KE (2001) The essential role of information management in point-of-care/critical care testing. Clin Chim Acta 307:159–168CrossRefGoogle Scholar
  87. 87.
    Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification – a review. Anal Chim Acta 638:115–125CrossRefGoogle Scholar
  88. 88.
    Lee HH, Dineva MA, Chua YL, Ritchie AV, Ushiro-Lumb I, Wisniewski CA (2010) Simple amplification-based assay: a nucleic acid-based point-of-care platform for HIV-1 testing. J Infect Dis 201(Suppl 1):S65–S72CrossRefGoogle Scholar
  89. 89.
    Lee WG, Kim Y-G, Chung BG, Demirci U, Khademhosseini A (2010) Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62:449–457CrossRefGoogle Scholar
  90. 90.
    Lien K-Y, Lee G-B (2010) Miniaturization of molecular biological techniques for gene assay. Analyst 135:1499–1518CrossRefGoogle Scholar
  91. 91.
    McNiven M, Talaulikar D (2012) Establishment of a conversion factor for the Cepheid GeneXpert BCR-ABL assay. Pathology, 44: 55–57­genexpert-system/. Accessed 12 Nov 2012
  92. 92.
    Coombs R, Dragavon J, Harb S (2011) Validation of a novel lab-in-a-tube analyzer and single-tube system for simple/rapid HIV-1 RNA quantification. 18th conference on retroviruses and opportunistic infections Accessed 12 Nov 2012
  93. 93.
    Tayo A, Ellis J, Phillips LL, Simpson S, Ward DJ (2012) Emerging point of care tests for influenza: innovation or status quo. Influenza and Other Respiratory Viruses, 6: 291-298 Accessed 12 Nov 2012
  94. 94.
    Hammond SP, Gagne LS, Stock SR, Marty FM, Gelman RS, Marasco WA, Poritz MA, Baden LR (2012) Respiratory Virus Detection in Immunocompromised Patients with FilmArray Respiratory Panel Compared to Conventional Methods. Journal of Clinical Microbiology, 50: 3216-3221 Accessed 12 Nov 2012Google Scholar
  95. 95.
    Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316CrossRefGoogle Scholar
  96. 96.
    Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, Mathies RA (2010) Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Anal Chem 82:10102–10109CrossRefGoogle Scholar
  97. 97.
    Chen L, Manz A, Day PJ (2007) Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7:1413–1423CrossRefGoogle Scholar
  98. 98.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63CrossRefGoogle Scholar
  99. 99.
    Holland CA, Kiechle FL (2005) Point-of-care molecular diagnostic systems – past, present and future. Curr Opin Microbiol 8:504–509CrossRefGoogle Scholar
  100. 100.
    Dineva MA, Mahilum-Tapay L, Lee H (2007) Sample preparation: a challenge in the development of Point-of-Care nucleic acid-based assays for resource-limited settings. Analyst 132:1193CrossRefGoogle Scholar
  101. 101.
    Huang Y, Mather EL, Bell JL, Madou M (2002) MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372:49–65CrossRefGoogle Scholar
  102. 102.
    Kulinski MD, Mahalanabis M, Gillers S, Zhang JY, Singh S, Klapperich CM (2009) Sample preparation module for bacterial lysis and isolation of DNA from human urine. Biomed Microdevices 11:671–678CrossRefGoogle Scholar
  103. 103.
    Blow N (2007) Microfluidics: in search of a killer application. Nat Methods 4:665–670CrossRefGoogle Scholar
  104. 104.
    Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  • Lawrence Kulinsky
    • 1
    Email author
  • Zahra Noroozi
    • 1
  • Marc Madou
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Department of Biomedical EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Ulsan National Institute of Science and Technology (UNIST)UlsanSouth Korea

Personalised recommendations