Generation and Establishment of Murine Adherent Cell Lines

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 946)

Abstract

We describe a method to derive cell lines and clones from cells of the murine midgestation aorta-gonads-mesonephros (AGM) microenvironment. We start from subdissected AGM regions in “explant” or “single cell suspension” type cultures from embryos transgenic for tsA58, a temperature-sensitive mutant of the SV40 T antigen gene. The number of cells in such cultures initially expand, but in most cases, this expansion phase is followed by a stable or even decline in cell number. After this so-called crisis phase, cell proliferation is noticeable in more than 90% of the cultures. Stromal cell clones can be isolated from these cultures, some of which have been cultured for more than 50 population doublings, and functionally characterized using various methods These stromal cell clones are valuable tools for the study of the regulation of hematopoietic stem and progenitor cells in the midgestation mouse embryo.

Key words

Aorta-gonads-mesonephros AGM Hematopoietic stem cells Stromal cell lines tsA58 mutants 

References

  1. 1.
    Santerre RF, Cook RA, Crisel RM, Sharp JD, Schmidt RJ, Williams DC, Wilson CP (1981) Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci USA 78:4339–4343PubMedCrossRefGoogle Scholar
  2. 2.
    Bayley SA, Stones AJ, Smith CG (1988) Immortalization of rat keratinocytes by transfection with polyomavirus large T gene. Exp Cell Res 177:232–236PubMedCrossRefGoogle Scholar
  3. 3.
    Jat PS, Sharp PA (1986) Large T antigens of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. J Virol 59:746–750PubMedGoogle Scholar
  4. 4.
    Ridley AJ, Paterson HF, Noble M, Land H (1988) Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J 7:1635–1645PubMedGoogle Scholar
  5. 5.
    Morales CP, Holt SE, Ouelette M, Kaur KJ, Yan Y, Wilson KJ, White MA, Wright WE, Shay JW (1999) Absence of cancer associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21:115–118PubMedCrossRefGoogle Scholar
  6. 6.
    Ohsawa K, Imai Y, Nakajima K, Kohsaka S (1997) Generation and characterization of a microglial cell line, MG5, derived from a p53-deficient mouse. Glia 21:285–298PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE (1998) The derivation and characterization of stromal cell lines from the bone marrow of p53−/− mice: new insights into osteoblast and adipocyte differentiation. J Bone Miner Res 13:195–204PubMedCrossRefGoogle Scholar
  8. 8.
    O’Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, Moody J, Silver ARJ, Davies DC, Alsopi AE, Neville AM, Jat PS (2001) Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci USA 98:646–651PubMedCrossRefGoogle Scholar
  9. 9.
    Tegtmeyer P (1975) Function of simian virus 40 gene A in transforming infection. J Virol 15:613–618PubMedGoogle Scholar
  10. 10.
    Jat PS, Cepko CL, Mulligan RC, Sharp PA (1986) Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol Cell Biol 6:1204–1217PubMedGoogle Scholar
  11. 11.
    Morgan JE, Beauchamp JR, Pagel CN, Peckham M, Ataliotis P, Jat PS, Noble MD, Farmer K, Partridge TA (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162:486–498PubMedCrossRefGoogle Scholar
  12. 12.
    Okuyama R, Yanai N, Obinata M (1995) Differentiation capacity toward mesenchymal cell lineages of bone marrow stromal cells established from temperature-sensitive SV40 T-antigen gene transgenic mouse. Exp Cell Res 218:424–429PubMedCrossRefGoogle Scholar
  13. 13.
    Renström J, Kröger M, Peschel C, Oostendorp RAJ (2010) How the niche regulates hematopoietic stem cells. Chem Biol Interact 184:7–15PubMedCrossRefGoogle Scholar
  14. 14.
    Garrett RW, Emerson SG (2009) Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell 4:503–506PubMedCrossRefGoogle Scholar
  15. 15.
    Walkley CR, Yuan YD, Chandraratna RA, McArthur GA (2002) Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis. Leukemia 16(9):1763–1772PubMedCrossRefGoogle Scholar
  16. 16.
    Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, Scadden DT (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857PubMedCrossRefGoogle Scholar
  17. 17.
    Oostendorp RAJ, Medvinsky AJ, Kusadasi N, Nakayama N, Harvey K, Orelio C, Ottersbach K, Covey T, Ploemacher RE, Saris C, Dzierzak E (2002) Embryonal subregion-derived stromal cell lines from novel temperature-sensitive SV40 T antigen transgenic mice support hematopoiesis. J Cell Sci 115:2099–2108PubMedGoogle Scholar
  18. 18.
    Umar A, Luider TM, Berrevoets CA, Grootegoed JA, Brinkmann AO (2003) Proteomic analysis of androgen-regulated protein expression in a mouse fetal vas deferens cell line. Endocrinology 144:1147–1154PubMedCrossRefGoogle Scholar
  19. 19.
    Oostendorp RAJ, Robin C, Steinhoff C, Marz S, Bräuer R, Nuber UA, Dzierzak EA, Peschel C (2005) Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells 23:842–851PubMedCrossRefGoogle Scholar
  20. 20.
    Renström J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A, Kröger M, Schiemann M, Busch DH, Esposito I, Lang R, Peschel C, Oostendorp RAJ (2009) Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 5:157–167PubMedCrossRefGoogle Scholar
  21. 21.
    Grzywacz B, Kataria N, Sikora M, Oostendorp RAJ, Dzierzak EA, Blazar BR, Miller JS, Verneris MR (2006) Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood 108:3824–3833PubMedCrossRefGoogle Scholar
  22. 22.
    Gordon-Keylock SA, Jackson M, Huang C, Samuel K, Axton RA, Oostendorp R, Taylor AH, Wilson J, Forrester L (2010) Induction of haematopoietic differentiation of mouse embryonic stem cells by an AGM-derived stromal cell line is not further enhanced by over-expression of HOXB4. Stem Cells Dev 19(11):1687–1698PubMedCrossRefGoogle Scholar
  23. 23.
    Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renström J, Lang R, Yung S, Santibanez-Coref M, Dzierzak E, Stojkovic M, Oostendorp RAJ, Forrester L, Lako M (2008) Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3:85–98PubMedCrossRefGoogle Scholar
  24. 24.
    Dzierzak EA, de Bruijn M (2001) Isolation and analysis of hematopoietic stem cells from mouse embryos. In: Klug CA, Jordan CT (eds) Methods in molecular medicine: hematopoietic stem cell protocols. Humana, New JerseyGoogle Scholar
  25. 25.
    Oostendorp RAJ, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE, Medvinsky AL, Dzierzak EA (2002) Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 99:1183–1189PubMedCrossRefGoogle Scholar
  26. 26.
    Miller CL, Eaves CJ (2001) Long-term culture-initiating cell assays for human and murine cells. In: Klug CA, Jordan CT (eds) Methods in molecular medicine: hematopoietic stem cell protocols. Humana, New JerseyGoogle Scholar
  27. 27.
    Miller CL, Lai B (2005) Human and mouse colony-forming assays. In: Helgason CD, Miller CL (eds) Methods in molecular biology: basic cell culture protocols. Humana, New JerseyGoogle Scholar
  28. 28.
    Szilvassy SJ, Nicolini FE, Eaves CJ, Miller CL (2001) Quantitation of murine and human hematopoietic stem cells by limiting-dilution analysis in competitively repopulated hosts. In: Klug CA, Jordan CT (eds) Methods in molecular medicine: hematopoietic stem cell protocols. Humana, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.The Stem Cell Physiology Laboratory, Medizinische KlinikTechnische Universität MünchenMunichGermany

Personalised recommendations