Skip to main content

Human Long-Term Culture Initiating Cell Assay

  • Protocol
  • First Online:
Basic Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 946))

Abstract

The long-term culture initiating cell (LTC-IC) assay, founded on the bone marrow long-term culture (LTC) system, measures primitive hematopoietic stem cells (termed LTC-IC) based on their capacity to produce myeloid progeny for at least 5 weeks. Adaptations of the LTC system including the use of stromal cell lines, application of limiting dilution analysis, and estimation of average hematopoietic progenitor output per LTC-IC under defined conditions have made it possible to accurately determine LTC-IC content in minimally separated and highly purified cell populations from human hematopoietic tissue sources such as bone marrow, peripheral blood, cord blood, fetal liver as well as cord blood and mobilized peripheral blood. Methodologies for measuring human LTC-IC using bulk cultures, limiting dilution analysis, and single cell cultures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6(4):372–375

    PubMed  CAS  Google Scholar 

  2. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344

    Article  PubMed  CAS  Google Scholar 

  3. Dexter TM et al (1980) The role of cells and their products in the regulation of in vitro stem cell proliferation and granulocyte development. J Supramol Struct 13(4):513–524

    Article  PubMed  CAS  Google Scholar 

  4. Greenberger JS (1978) Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature 275(5682):752–754

    Article  PubMed  CAS  Google Scholar 

  5. Greenberg HM et al (1981) Human granulocytes generated in continuous bone marrow culture are physiologically normal. Blood 58(4):724–732

    PubMed  CAS  Google Scholar 

  6. Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85(4):929–940

    PubMed  CAS  Google Scholar 

  7. Gartner S, Kaplan HS (1980) Long-term culture of human bone marrow cells. Proc Natl Acad Sci USA 77(8):4756–4759

    Article  PubMed  CAS  Google Scholar 

  8. Rawlings DJ et al (1995) Long-term culture system for selective growth of human B-cell progenitors. Proc Natl Acad Sci USA 92(5):1570–1574

    Article  PubMed  CAS  Google Scholar 

  9. Whitlock CA, Witte ON (1982) Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 79(11):3608–3612

    Article  PubMed  CAS  Google Scholar 

  10. van den Brink MR et al (1990) The generation of natural killer (NK) cells from NK precursor cells in rat long-term bone marrow cultures. J Exp Med 172(1):303–313

    Article  PubMed  Google Scholar 

  11. Miller JS, Verfaillie C, McGlave P (1992) The generation of human natural killer cells from CD34+/DR− primitive progenitors in long-term bone marrow culture. Blood 80(9):2182–2187

    PubMed  CAS  Google Scholar 

  12. Sutherland HJ et al (1991) Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78(3):666–672

    PubMed  CAS  Google Scholar 

  13. Issaad C et al (1993) A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38− progenitor cells in long-term cultures and semisolid assays. Blood 81(11):2916–2924

    PubMed  CAS  Google Scholar 

  14. Croisille L et al (1994) Hydrocortisone differentially affects the ability of murine stromal cells and human marrow-derived adherent cells to promote the differentiation of CD34++/CD38− long-term culture-initiating cells. Blood 84(12):4116–4124

    PubMed  CAS  Google Scholar 

  15. Hao QL et al (1995) A functional comparison of CD34+ CD38− cells in cord blood and bone marrow. Blood 86(10):3745–3753

    PubMed  CAS  Google Scholar 

  16. Thiemann FT et al (1998) The murine stromal cell line AFT024 acts specifically on human CD34+CD38− progenitors to maintain primitive function and immunophenotype in vitro. Exp Hematol 26(7):612–619

    PubMed  CAS  Google Scholar 

  17. Wineman J et al (1996) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87(10):4082–4090

    PubMed  CAS  Google Scholar 

  18. Wineman JP, Nishikawa S, Muller-Sieburg CE (1993) Maintenance of high levels of pluripotent hematopoietic stem cells in vitro: effect of stromal cells and c-kit. Blood 81(2):365–372

    PubMed  CAS  Google Scholar 

  19. Collins LS, Dorshkind K (1987) A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J Immunol 138(4):1082–1087

    PubMed  CAS  Google Scholar 

  20. Miller JS et al (1999) Single adult human CD34(+)/Lin−/CD38(−) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells. Blood 93(1):96–106

    PubMed  CAS  Google Scholar 

  21. Berardi AC et al (1997) Individual CD34+CD38lowCD19−CD10− progenitor cells from human cord blood generate B lymphocytes and granulocytes. Blood 89(10):3554–3564

    PubMed  CAS  Google Scholar 

  22. Hao QL et al (1998) In vitro identification of single CD34+CD3− cells with both lymphoid and myeloid potential. Blood 91(11):4145–4151

    PubMed  CAS  Google Scholar 

  23. Punzel M et al (1999) The myeloid-lymphoid initiating cell (ML-IC) assay assesses the fate of multipotent human progenitors in vitro. Blood 93(11):3750–3756

    PubMed  CAS  Google Scholar 

  24. Holmes R, Zuniga-Pflucker JC (2009) The OP9-DL1 system: generation of T-lympho­cytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb Protoc 2009(2):pdb.prot5156

    Article  PubMed  Google Scholar 

  25. Hogge DE et al (1996) Enhanced detection, maintenance, and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human steel factor, interleukin-3, and granulocyte colony-stimulating factor. Blood 88(10):3765–3773

    PubMed  CAS  Google Scholar 

  26. Fazekas de St G (1982) The evaluation of limiting dilution assays. J Immunol Methods 49(2):R11–R23

    Article  Google Scholar 

  27. Sutherland HJ et al (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 87(9):3584–3588

    Article  PubMed  CAS  Google Scholar 

  28. Nicolini FE et al (1999) Unique differentiation programs of human fetal liver stem cells shown both in vitro and in vivo in NOD/SCID mice. Blood 94(8):2686–2695

    PubMed  CAS  Google Scholar 

  29. Prosper F, Stroncek D, Verfaillie CM (1996) Phenotypic and functional characterization of long-term culture-initiating cells present in peripheral blood progenitor collections of normal donors treated with granulocyte colony-stimulating factor. Blood 88(6):2033–2042

    PubMed  CAS  Google Scholar 

  30. Roy V, Miller JS, Verfaillie CM (1997) Phenotypic and functional characterization of committed and primitive myeloid and lymphoid hematopoietic precursors in human fetal liver. Exp Hematol 25(5):387–394

    PubMed  CAS  Google Scholar 

  31. Punzel M et al (1999) The type of stromal feeder used in limiting dilution assays influences frequency and maintenance assessment of human long-term culture initiating cells. Leukemia 13(1):92–97

    Article  PubMed  CAS  Google Scholar 

  32. Heather JS, Eaves AC, Eaves CJ (1991) Quantitative assays for human hematopoietic progenitor cells. In: Gee AP (ed) Bone marrow processing and purging: A practical guide. CRC Press Inc, Boca Raton, FL, pp 155–171

    Google Scholar 

  33. Sutherland HJ et al (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74(5):1563–1570

    PubMed  CAS  Google Scholar 

  34. Lansdorp PM, Dragowska W (1992) Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med 175(6):1501–1509

    Article  PubMed  CAS  Google Scholar 

  35. Sauvageau G et al (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 91(25):12223–12227

    Article  PubMed  CAS  Google Scholar 

  36. Petzer AL et al (1996) Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci USA 93(4):1470–1474

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, M., Miller, C.L., Eaves, C.J. (2013). Human Long-Term Culture Initiating Cell Assay. In: Helgason, C., Miller, C. (eds) Basic Cell Culture Protocols. Methods in Molecular Biology, vol 946. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-128-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-128-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-127-1

  • Online ISBN: 978-1-62703-128-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics