Isolation and Characterization of Cancer Stem Cells In Vitro

Part of the Methods in Molecular Biology book series (MIMB, volume 946)


The cancer stem cell hypothesis is an appealing concept to account for intratumoral heterogeneity and the observation that systemic metastasis and treatment failure are often associated with the survival of a small number of cancer cells. Whilst in vivo evidence forms the foundation of this concept, in vitro methods and reagents are attractive as they offer opportunities to perform experiments that are not possible in an animal model. While there is abundant evidence that existing cancer cell lines are not reliable models of tumor heterogeneity, recent advances based on well validated novel cancer cell lines established de novo in defined serum-free media are encouraging, particularly in the study of glioblastoma multiforme. In this chapter we wish to broadly outline the process of establishing, characterizing, and managing novel cancer cell lines in defined serum-free media, and discuss the limitations and potential opportunities that may arise from these model systems.

Key words

Cancer stem cell Defined serum-free media Tumor-initiating cell Model fidelity 


  1. 1.
    Eigen M (1973) The origin of biological information. In: Mehra J (ed) The physicist’s conception of nature. Reidel, Dordecht, HollandGoogle Scholar
  2. 2.
    Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466PubMedCrossRefGoogle Scholar
  3. 3.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 19:23–28CrossRefGoogle Scholar
  4. 4.
    Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, Nelson WG, Yegnasubramanian S, Luo J, Wang Y, Xu J, Isaacs WB, Visakorpi T, Bova GS (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15:559–565PubMedCrossRefGoogle Scholar
  5. 5.
    Turner C, Kohandel M (2010) Investigating the link between epithelial-mesenchymal transition and the cancer stem cell phenotype: a mathematical approach. J Theor Biol 265:329–335PubMedCrossRefGoogle Scholar
  6. 6.
    van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C (2009) Human cancer cell lines: experimental models for cancer cells in situ? For cancer stem cells? Biochim Biophys Acta 1795:92–103PubMedGoogle Scholar
  7. 7.
    Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, Yung R, Parmigiani G, Dorsch M, Peacock CD, Watkins DN (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69:3364–3373PubMedCrossRefGoogle Scholar
  8. 8.
    American Type Culture Collection Standards Development Organization Workgroup (2010) Cell line misidentification: the beginning of the end. Nat Rev Cancer 10:441–448CrossRefGoogle Scholar
  9. 9.
    Drexler H, Uphoff C (2000) Contamination of cell culture, mycoplasma. In: Spier E (ed) Encyclopedia of cell technology. Wiley, New YorkGoogle Scholar
  10. 10.
    Lorenzi PL, Reinhold WC, Varma S, Hutchinson AA, Pommier Y, Chanock SJ, Weinstein JN (2009) DNA fingerprinting of the NCI-60 cell line panel. Mol Cancer Ther 8:713–724PubMedCrossRefGoogle Scholar
  11. 11.
    Wang H, Huang S, Shou J, Su EW, Onyia JE, Liao B, Li S (2006) Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data. BMC Genomics 7:166PubMedCrossRefGoogle Scholar
  12. 12.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedCrossRefGoogle Scholar
  13. 13.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576PubMedCrossRefGoogle Scholar
  14. 14.
    Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16PubMedGoogle Scholar
  15. 15.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172PubMedCrossRefGoogle Scholar
  16. 16.
    Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327PubMedCrossRefGoogle Scholar
  17. 17.
    Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765PubMedCrossRefGoogle Scholar
  18. 18.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRefGoogle Scholar
  19. 19.
    Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580PubMedCrossRefGoogle Scholar
  20. 20.
    Lenkiewicz M, Li N, Singh SK (2009) Culture and isolation of brain tumor initiating cells. Curr Protoc Stem Cell Biol Chapter 3:Unit3.3Google Scholar
  21. 21.
    Yao M, Taylor RA, Richards MG, Sved P, Wong J, Eisinger D, Xie C, Salomon R, Risbridger GP, Dong Q (2010) Prostate-regenerating capacity of cultured human adult prostate epithelial cells. Cells Tissues Organs 191:203–212PubMedCrossRefGoogle Scholar
  22. 22.
    Wang S (2009) Anchorage-independent growth of prostate cancer stem cells. Methods Mol Biol 568:151–160PubMedCrossRefGoogle Scholar
  23. 23.
    Kreso A, O’Brien CA (2008) Colon cancer stem cells. Curr Protoc Stem Cell Biol Chapter 3:Unit 3.1Google Scholar
  24. 24.
    Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G (2008) Isolation and culture of colon cancer stem cells. Methods Cell Biol 86:311–324PubMedCrossRefGoogle Scholar
  25. 25.
    Oh H-M, Oh J-M, Choi S-C, Kim S-W, Han W-C, Kim T-H, Park D-S, Jun C-D (2003) An efficient method for the rapid establishment of Epstein-Barr virus immortalization of human B lymphocytes. Cell Prolif 36:191–197PubMedCrossRefGoogle Scholar
  26. 26.
    Garner CM, Hubbold LM, Chakraborti PR (2000) Mycoplasma detection in cell cultures: a comparison of four methods. Br J Biomed Sci 57:295–301PubMedGoogle Scholar
  27. 27.
    Uphoff CC, Drexler HG (2005) Detection of mycoplasma contaminations. Methods Mol Biol 290:13–23PubMedGoogle Scholar
  28. 28.
    Uphoff CC, Drexler HG (2005) Eradication of mycoplasma contaminations. Methods Mol Biol 290:25–34PubMedGoogle Scholar
  29. 29.
    Gignac SM, Uphoff CC, MacLeod RA, Steube K, Voges M, Drexler HG (1992) Treatment of mycoplasma-contaminated continuous cell lines with mycoplasma removal agent (MRA). Leuk Res 16:815–822PubMedCrossRefGoogle Scholar
  30. 30.
    Masters JR, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P, Toji LH, Ohno T, Tanabe H, Arlett CF, Kelland LR, Harrison M, Virmani A, Ward TH, Ayres KL, Debenham PG (2001) Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci USA 98:8012–8017PubMedCrossRefGoogle Scholar
  31. 31.
    Tarnok A, Ulrich H, Bocsi J (2010) Phenotypes of stem cells from diverse origin. Cytometry A 77:6–10PubMedGoogle Scholar
  32. 32.
    Alexander CM, Puchalski J, Klos KS, Badders N, Ailles L, Kim CF, Dirks P, Smalley MJ (2009) Separating stem cells by flow cytometry: reducing variability for solid tissues. Cell Stem Cell 5:579–583PubMedCrossRefGoogle Scholar
  33. 33.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978PubMedCrossRefGoogle Scholar
  34. 34.
    Nigro K, Tynski Z, Wasman J, Abdul-Karim F, Wang N (2007) Comparison of cell block preparation methods for nongynecologic ThinPrep specimens. Diagn Cytopathol 35:640–643PubMedCrossRefGoogle Scholar
  35. 35.
    Weiswald L-B, Guinebretiere J-M, Richon S, Bellet D, Saubamea B, Dangles-Marie V (2010) In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy. BMC Cancer 10:106PubMedCrossRefGoogle Scholar
  36. 36.
    Robertson D, Savage K, Reis-Filho JS, Isacke CM (2008) Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol 9:13PubMedCrossRefGoogle Scholar
  37. 37.
    Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6:21–30PubMedCrossRefGoogle Scholar
  38. 38.
    Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, Tanino M, Nishihara H, Tanaka S (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18:1037–1046PubMedCrossRefGoogle Scholar
  39. 39.
    Saferali A, Grundberg E, Berlivet S, Beauchemin H, Morcos L, Polychronakos C, Pastinen T, Graham J, McNeney B, Naumova AK (2010) Cell culture-induced aberrant methylation of the imprinted IG DMR in human lymphoblastoid cell lines. Epigenetics 5:50–60PubMedCrossRefGoogle Scholar
  40. 40.
    Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770PubMedGoogle Scholar
  41. 41.
    Kuo K-T, Guan B, Feng Y, Mao T-L, Chen X, Jinawath N, Wang Y, Kurman RJ, Shih I-M, Wang T-L (2009) Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Res 69:4036–4042PubMedCrossRefGoogle Scholar
  42. 42.
    Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99:12963–12968PubMedCrossRefGoogle Scholar
  43. 43.
    Beroukhim R, Brunet J-P, Di Napoli A, Mertz KD, Seeley A, Pires MM, Linhart D, Worrell RA, Moch H, Rubin MA, Sellers WR, Meyerson M, Linehan WM, Kaelin WG Jr, Signoretti S (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69:4674–4681PubMedCrossRefGoogle Scholar
  44. 44.
    Virtanen C, Ishikawa Y, Honjoh D, Kimura M, Shimane M, Miyoshi T, Nomura H, Jones MH (2002) Integrated classification of lung tumors and cell lines by expression profiling. Proc Natl Acad Sci USA 99:12357–12362PubMedCrossRefGoogle Scholar
  45. 45.
    Srebrow A, Friedmann Y, Ravanpay A, Daniel CW, Bissell MJ (1998) Expression of Hoxa-1 and Hoxb-7 is regulated by extracellular matrix-dependent signals in mammary epithelial cells. J Cell Biochem 69:377–391PubMedCrossRefGoogle Scholar
  46. 46.
    Lefkovits I, Waldmann H (1984) Limiting dilution analysis of the cells of immune system I. The clonal basis of the immune response. Immunol Today 5:265–268CrossRefGoogle Scholar
  47. 47.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  48. 48.
    Bellows CG, Aubin JE (1989) Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 133:8–13PubMedCrossRefGoogle Scholar
  49. 49.
    Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188PubMedCrossRefGoogle Scholar
  50. 50.
    Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78PubMedCrossRefGoogle Scholar
  51. 51.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  52. 52.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567PubMedCrossRefGoogle Scholar
  53. 53.
    Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2009) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55PubMedCrossRefGoogle Scholar
  54. 54.
    Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Li Z, Su Y, Stass SA, Katz RL (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7:330–338PubMedCrossRefGoogle Scholar
  55. 55.
    Sales-Pardo I, Avendano A, Barquinero J, Domingo JC, Marin P, Petriz J, Camargo FD, Goodell MA (2006) The Hoechst low-fluorescent profile of the side population: clonogenicity versus dye retention. Blood 108:1774–1775PubMedCrossRefGoogle Scholar
  56. 56.
    Burkert J, Otto WR, Wright NA (2008) Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 214:564–573PubMedCrossRefGoogle Scholar
  57. 57.
    Gedye C, Quirk J, Browning J, Svobodova S, John T, Sluka P, Dunbar PR, Corbeil D, Cebon J, Davis ID (2009) Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunol Immunother 58:1635–1646PubMedCrossRefGoogle Scholar
  58. 58.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedCrossRefGoogle Scholar
  59. 59.
    Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J, Spang R, Storch A, Beier CP (2010) Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 70:2030–2040PubMedCrossRefGoogle Scholar
  60. 60.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of GBM cells and induce differentiation of brain tumor stem cells. BMC Med 6:14PubMedCrossRefGoogle Scholar
  61. 61.
    Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848PubMedCrossRefGoogle Scholar
  62. 62.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  63. 63.
    Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J, Dictus C, Gdynia G, Combs SE, Goidts V, Helmke BM, Eckstein V, Roth W, Beckhove P, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende C (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16:2715–2728PubMedCrossRefGoogle Scholar
  64. 64.
    Wurdak H, Zhu S, Romero A, Lorger M, Watson J, C-y C, Zhang J, Natu V, Lairson LL, Walker JR, Trussell CM, Harsh GR, Vogel H, Felding-Habermann B, Orth AP, Miraglia LJ, Rines DR, Skirboll SL, Schultz PG (2010) An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation. Cell Stem Cell 6:37–47PubMedCrossRefGoogle Scholar
  65. 65.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349PubMedCrossRefGoogle Scholar
  66. 66.
    Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594PubMedCrossRefGoogle Scholar
  67. 67.
    Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New YorkGoogle Scholar
  68. 68.
    Bentivegna A, Conconi D, Panzeri E, Sala E, Bovo G, Viganò P, Brunelli S, Bossi M, Tredici G, Strada G, Dalprà L (2009) Biological heterogeneity of putative bladder cancer stem-like cell populations from human bladder transitional cell carcinoma samples. Cancer Sci 101:416–424PubMedCrossRefGoogle Scholar
  69. 69.
    Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suva D, Clement V, Provero P, Cironi L, Osterheld MC, Guillou L, Stamenkovic I (2009) Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res 69:1776–1781PubMedCrossRefGoogle Scholar
  70. 70.
    Nijmeijer BA, Szuhai K, Goselink HM, van Schie MLJ, van der Burg M, de Jong D, Marijt EW, Ottmann OG, Willemze R, Falkenburg JHF (2009) Long-term culture of primary human lymphoblastic leukemia cells in the absence of serum or hematopoietic growth factors. Exp Hematol 37:376–385PubMedCrossRefGoogle Scholar
  71. 71.
    Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG, Eramo A, Napoletano C, Gallo D, Perillo A, Nuti M, Pierelli L, Testa U, Scambia G, Ferrandina G (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15:4299–4311PubMedCrossRefGoogle Scholar
  72. 72.
    Guzmán-Ramírez N, Völler M, Wetterwald A, Germann M, Cross NA, Rentsch CA, Schalken J, Thalmann GN, Cecchini MG (2009) In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate 69:1683–1693PubMedCrossRefGoogle Scholar
  73. 73.
    Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, Ku HH, Chiou SH, Lo WL (2009) Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 385:307–313PubMedCrossRefGoogle Scholar
  74. 74.
    Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY, Farkas DL, Black KL, Yu JS (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101:303–311PubMedCrossRefGoogle Scholar
  75. 75.
    Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10:R52PubMedCrossRefGoogle Scholar
  76. 76.
    Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT (2008) The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 68:9703–9711PubMedCrossRefGoogle Scholar
  77. 77.
    Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3:e2428PubMedCrossRefGoogle Scholar
  78. 78.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  79. 79.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402PubMedCrossRefGoogle Scholar
  80. 80.
    Vermeulen L, Todaro M, de Sousa MF, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci 105:13427–13432PubMedCrossRefGoogle Scholar
  81. 81.
    Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G (2009) Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 182:7287–7296PubMedCrossRefGoogle Scholar
  82. 82.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514PubMedCrossRefGoogle Scholar
  83. 83.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  84. 84.
    Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F, Bruzzone MG, Finocchiaro G (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66:10247–10252PubMedCrossRefGoogle Scholar
  85. 85.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270PubMedCrossRefGoogle Scholar
  86. 86.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedCrossRefGoogle Scholar
  87. 87.
    Weiss S, Pin JP, Sebben M, Kemp DE, Sladeczek F, Gabrion J, Bockaert J (1986) Synaptogenesis of cultured striatal neurons in serum-free medium: a morphological and biochemical study. Proc Natl Acad Sci USA 83:2238–2242PubMedCrossRefGoogle Scholar
  88. 88.
    Clarke L, van der Kooy D (2009) Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27:1879–1886PubMedCrossRefGoogle Scholar
  89. 89.
    Csete M (2005) Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 1049:1–8PubMedCrossRefGoogle Scholar
  90. 90.
    Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531PubMedCrossRefGoogle Scholar
  91. 91.
    Coles-Takabe BL, Brain I, Purpura KA, Karpowicz P, Zandstra PW, Morshead CM, van der Kooy D (2008) Don’t look: growing clonal versus non-clonal neural stem cell colonies. Stem Cells. doi:10.1634/stemcells.2008-0558Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Ontario Cancer InstituteTorontoCanada
  2. 2.Department of Medical BiophysicsOntario Cancer Institute, University of TorontoTorontoCanada

Personalised recommendations