Skip to main content

Viral Transformation of Epithelial Cells

  • Protocol
  • First Online:
Epithelial Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 945))

  • 10k Accesses

Abstract

Approximately 18% of human cancers have a viral etiology and the majority of these involve transformation of epithelial cells. Viral proteins transform epithelia by inducing alterations in the normal cell growth and differentiation pathways through the targeting of host proteins. Among the DNA viruses responsible for causing carcinomas are the human papillomaviruses as well as several members of the herpes and polyomavirus families. A number of techniques have been developed to study the mechanisms by which viruses immortalize epithelial cells and alter differentiation properties. These methods include the generation of immortalized lines by transfection or infection as well as the use of organotypic raft cultures, suspension in methylcellulose, and treatment with high calcium levels to examine how differentiation is altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrillo-Infante C, Abbadessa G, Bagella L, Giordano A (2007) Viral infections as a cause of cancer. Int J Oncol 30:1521–1528

    PubMed  CAS  Google Scholar 

  2. Epstein MA, Henle G, Achong BG, Barr YM (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J Exp Med 121:761–770

    Article  PubMed  CAS  Google Scholar 

  3. Desgranges C, Wolf H, De-The G, Shanmugaratnam K, Cammoun N, Ellouz R et al (1975) Nasopharyngeal carcinoma X. Presence of epstein-barr genomes in separated epithelial cells of tumours in patients from Singapore, Tunisia and Kenya. Int J Cancer 16:7–15

    Article  PubMed  CAS  Google Scholar 

  4. Raab-Traub N, Flynn K (1986) The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47:883–889

    Article  PubMed  CAS  Google Scholar 

  5. Busson P, Keryer C, Ooka T, Corbex M (2004) EBV-associated nasopharyngeal carcinomas: from epidemiology to virus-targeting strategies. Trends Microbiol 12:356–360

    Article  PubMed  CAS  Google Scholar 

  6. Chan AT, Teo PM, Johnson PJ (2002) Nasopharyngeal carcinoma. Ann Oncol 13:1007–1015

    Article  PubMed  CAS  Google Scholar 

  7. Tomkinson B, Roberson E, Kieff E (1993) Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3 C are essential for B-lymphocyte growth transformation. J Virol 67:2014–2025

    PubMed  CAS  Google Scholar 

  8. Rezaee SA, Cunningham C, Davison AJ, Blackbourn DJ (2006) Kaposi’s sarcoma-associated herpesvirus immune modulation: an overviews. J Gen Virol 87:1781–1804

    Article  PubMed  CAS  Google Scholar 

  9. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319:1096–1100

    Article  PubMed  CAS  Google Scholar 

  10. Penn I, First MR (1999) Merkel’s cell carcinoma in organ recipients: report of 41 cases. Transplantation 68:1717–1721

    Article  PubMed  CAS  Google Scholar 

  11. Lanoy E, Dores GM, Madeleine MM, Toro JR, Fraumeni JF, Engels EA (2009) Epidemiology of nonkeratinocytic skin cancers among persons with AIDS in the United States. AIDS 23:385–393

    Article  PubMed  Google Scholar 

  12. Shuda M, Feng H, Kwun HJ, Rosen ST, Gjoerup O, Moore PS, Chang Y (2008) T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci USA 105:16272–16277

    Article  PubMed  CAS  Google Scholar 

  13. Walboomers JMM, Jacobs MV, Manos MM, Bosch FZ, Kummer JA, Shah KV et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  14. Weaver BA (2006) Epidemiology and natural history of genital human papillomavirus infection. J Am Osteopath Assoc 106:S2–S8

    PubMed  Google Scholar 

  15. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  PubMed  CAS  Google Scholar 

  16. Steben M, Duarte-Franco E (2007) Human papillomavirus infection: epidemiology and pathophysiology. Gynecol Oncol 107:S2–S5

    Article  PubMed  CAS  Google Scholar 

  17. Hummel M, Hudson JB, Laimins LA (1992) Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol 66:6070–6080

    PubMed  CAS  Google Scholar 

  18. Ruesch MN, Laimins LA (1998) Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology 250:19–29

    Article  PubMed  CAS  Google Scholar 

  19. Barbosa MS, Lowy DR, Schiller JT (1989) Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol 63:1404–1407

    PubMed  CAS  Google Scholar 

  20. Cole ST, Danos O (1987) Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol 193:599–608

    Article  PubMed  CAS  Google Scholar 

  21. Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10:4129–4135

    PubMed  CAS  Google Scholar 

  22. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase inthe ubiquination of p53. Cell 75:495–505

    Article  PubMed  CAS  Google Scholar 

  23. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  PubMed  CAS  Google Scholar 

  24. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79

    Article  PubMed  CAS  Google Scholar 

  25. Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82

    Article  PubMed  CAS  Google Scholar 

  26. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al (1997) hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 90:785–795

    Article  PubMed  CAS  Google Scholar 

  27. Gewin L, Galloway DA (2001) E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 75:7198–7201

    Article  PubMed  CAS  Google Scholar 

  28. Oh ST, Kyo S, Laimins LA (2001) Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 75:5559–5566

    Article  PubMed  CAS  Google Scholar 

  29. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the drosophilia discs large tumor suppressor protein. Proc Natl Acad Sci USA 94:11612–11616

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa S, Huibregtse JM (2000) Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20:8244–8253

    Article  PubMed  CAS  Google Scholar 

  31. Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74:9680–9693

    Article  PubMed  CAS  Google Scholar 

  32. Glaunsinger B, Lee SS, Thomas M, Banks L, Javier RT (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4^ORF1 and high risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280

    Article  PubMed  CAS  Google Scholar 

  33. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L, Banks L (2002) Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21:5088–5096

    Article  PubMed  CAS  Google Scholar 

  34. Lee SS, Weiss RS, Javier RT (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophilia discs large tumor suppressor protein. Proc Natl Acad Sci USA 94:6670–6675

    Article  PubMed  CAS  Google Scholar 

  35. Bedell MA, Jones KH, Grossman SR, Laimins LA (1989) Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J Virol 63:1247–1255

    PubMed  CAS  Google Scholar 

  36. Halbert CL, Demers GW, Galloway DA (1991) The E7 gene of human papillomavirus type 1 is sufficient for immortalization of human epithelial cells. J Virol 65:473–478

    PubMed  CAS  Google Scholar 

  37. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papillomavirus 16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937

    Article  PubMed  CAS  Google Scholar 

  38. Davies R, Hicks R, Crook T, Morris J, Vousden K (1993) Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J Virol 67:2521–2528

    PubMed  CAS  Google Scholar 

  39. Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev 9:2335–2349

    Article  PubMed  CAS  Google Scholar 

  40. Martin LG, Demers GW, Galloway DA (1998) Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. J Virol 72:975–985

    PubMed  CAS  Google Scholar 

  41. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM (1989) Complex formation of human papillomavirus E7 protein with the retinoblastoma tumor suppressor gene product. EMBO J 8:4099–4105

    PubMed  CAS  Google Scholar 

  42. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11:2090–2100

    Article  PubMed  CAS  Google Scholar 

  43. Jones DL, Lani RM, Munger K (1997) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 11:2101–2111

    Article  PubMed  CAS  Google Scholar 

  44. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P (1996) Interaction of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 protein. Oncogene 13:2323–2330

    PubMed  CAS  Google Scholar 

  45. Doorbar JSE, Sterling J, Mclean C, Crawford L (1991) Specific interation between HPV-16 E1^E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q, Griffin H, Southern S, Jackson D, Martin A, McIntosh P et al (2004) Functional analysis of the human papillomavirus type 16 E1^E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol 78:821–833

    Article  PubMed  CAS  Google Scholar 

  47. Davy CE, Jackson DJ, Wang Q, Raj K, Masterson PJ, Fenner MF et al (2002) Identification of a G2 arrest domain in the E1^E protein of human papillomavirus type 16. J Virol 76:9806–9818

    Article  PubMed  CAS  Google Scholar 

  48. Nakahara T, Peh WL, Doorbar J, Lee D, Lambert PF (2005) Human papillomavirus type 16 E1^E4 contributes to multiple facets of the papillomavirus life cycle. J Virol 79:13150–13165

    Article  PubMed  CAS  Google Scholar 

  49. Wilson R, Fehrmann F, Laimins LA (2005) Role of the E1^E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol 79:6732–6740

    Article  PubMed  CAS  Google Scholar 

  50. Wilson R, Ryan GB, Knight GL, Laimins LA, Roberts S (2007) The full-length E1^E4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression. Virology 362:453–460

    Article  PubMed  CAS  Google Scholar 

  51. Conrad M, Bubb VJ, Schlegel R (1993) The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol 67:6170–6178

    PubMed  CAS  Google Scholar 

  52. Disbrow GL, Hanover JA, Schlegel R (2005) Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 79:5839–5846

    Article  PubMed  CAS  Google Scholar 

  53. Disbrow GL, Sunitha I, Baker CC, Hanover J, Schlegel R (2003) Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology 311:105–114

    Article  PubMed  CAS  Google Scholar 

  54. Bouvard VG, Matlashewski G, Gu ZM, Storey A, Banks L (1994) The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203:73–80

    Article  PubMed  CAS  Google Scholar 

  55. Valle GF, Banks L (1995) The human papillomavirus HPV-6 and HPV-16 E5 proteins cooperate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 96:1239–1245

    Article  Google Scholar 

  56. Bergman P, Ustav M, Sedman J, Moreno-Lopez J, Vennstrom B, Pettersson U (1988) The E5 gene of bovine papillomavirus type 1 is sufficient for complete oncogenic transformation of mouse fibroblasts. Oncogene 2:453–459

    PubMed  CAS  Google Scholar 

  57. Schiller JT, Vass WC, Vousden KH, Lowy DR (1986) E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene. J Virol 57:1–6

    PubMed  CAS  Google Scholar 

  58. Schlegel R, Wade-Glass M, Rabson MS, Yang YC (1986) The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. Science 233:464–467

    Article  PubMed  CAS  Google Scholar 

  59. Petti L, Nilson L, DiMaio D (1991) Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J 10:845–855

    PubMed  CAS  Google Scholar 

  60. Leechanachai P, Banks L, Moreau F, Matlashewski G (1992) The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7:19–25

    PubMed  CAS  Google Scholar 

  61. Straight SW, Hinkle PM, Jewers RJ, McCance DJ (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67:4521–4532

    PubMed  CAS  Google Scholar 

  62. Stoppler MC, Straight SW, Tsao G, Schlegel R, McCance DJ (1996) The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223:251–254

    Article  PubMed  CAS  Google Scholar 

  63. Conrad M, Goldstein D, Andresson T, Schlegel R (1994) The E5 protein of HPV-6, but not HPV-16, associates efficiently with cellular growth factor receptors. Virology 200:796–800

    Article  PubMed  CAS  Google Scholar 

  64. Hwang ES, Nottoli T, DiMaio D (1995) The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211:227–233

    Article  PubMed  CAS  Google Scholar 

  65. Goldstein DJ, Schlegel R (1991) Bovine papillomavirus E5 oncoproteins binds to the 16 K component of vacuolar H+-ATPases. Nature 354:347–349

    Article  Google Scholar 

  66. Goldstein D, Schlegel R (1990) The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein. EMBO J 9:137–145

    PubMed  CAS  Google Scholar 

  67. Goldstein DJ, Schlegel R (1992) A glutamine residue in the membrane-associating domain of the bovine papillomavirus type 1 E5 oncoprotein mediates its binding to a transmembrane component of the vacuolar H(+)-ATPase. J Virol 66:405–413

    PubMed  CAS  Google Scholar 

  68. Regan JA, Laimins LA (2008) Bap31 is a novel target of the human papillomavirus E5 protein. J Virol 82:10042–10051

    Article  PubMed  CAS  Google Scholar 

  69. Fehrmann F, Klumpp DJ, Laimins LA (2003) Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 77:2819–2831

    Article  PubMed  CAS  Google Scholar 

  70. Genther S, Stering S, Duensing S, Munger K, Sattler C, Lambert P (2003) Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 77:2832–2842

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laimonis A. Laimins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Regan, J.A., Laimins, L.A. (2012). Viral Transformation of Epithelial Cells. In: Randell, S., Fulcher, M. (eds) Epithelial Cell Culture Protocols. Methods in Molecular Biology, vol 945. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-125-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-125-7_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-124-0

  • Online ISBN: 978-1-62703-125-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics