Skip to main content

Targeted Proteomics for Metabolic Pathway Optimization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 944))

Abstract

A crucial part of optimization of metabolically engineered organisms is producing balanced levels of pathway proteins. Typically, protein levels are monitored by Western blot analysis; however, application to multiple enzyme pathways can be difficult without unique antibodies for each enzyme in the pathway. Furthermore, it can be time consuming, and cost prohibitive during exploratory stages of pathway design when many different proteins must be monitored simultaneously. We present here a targeted proteomics approach that uses selected-reaction monitoring (SRM) mass spectrometry to quantify multiple proteins in a sample. SRM methods provide high selectivity and high sensitivity to enable rapid quantification of multiple proteins in an engineered pathway regardless of sequence or organism of origin.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    Article  PubMed  Google Scholar 

  2. Baillie TA (2008) Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 21(1):129–137

    Article  PubMed  Google Scholar 

  3. Picotti P, Rinner O, Stallmach R et al (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7(1):43–46

    Article  PubMed  CAS  Google Scholar 

  4. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9(5):429–434

    Article  PubMed  CAS  Google Scholar 

  5. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  6. Sun W, Gao S, Wang L et al (2006) Microwave-assisted Protein Preparation and Enzymatic Digestion in Proteomics. Mol Cell Proteomics 5(4):769–776

    PubMed  CAS  Google Scholar 

  7. Yeung Y-G, Nieves E, Angeletti RH, Stanley ER (2008) Removal of detergents from protein digests for mass spectrometry analysis. Anal Biochem 382(2):135–137

    Article  PubMed  CAS  Google Scholar 

  8. Bluemlein K, Ralser M (2011) Monitoring protein expression in whole-cell extracts by targeted label- and standard-free LC-MS/MS. Nat Protoc 6(6):859–869

    Article  PubMed  CAS  Google Scholar 

  9. Hunt DF, Yates DR, Shabanowitz J et al (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83:6233–6237

    Article  PubMed  CAS  Google Scholar 

  10. Prakash A, Tomazela DM, Frewen B et al (2009) Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development. J Proteome Res 8(6):2733–2739

    Article  PubMed  CAS  Google Scholar 

  11. Papayannopoulos IA (1995) The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev 14:49–73

    Article  CAS  Google Scholar 

  12. Picotti P, Lam H, Campbell D et al (2008) A database of mass spectrometric assays for the yeast proteome. Nat Methods 5(11):913–914

    Article  PubMed  CAS  Google Scholar 

  13. Wenschuh H, Volkmer-Engert R, Schmidt M et al (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55(3):188–206

    Article  PubMed  CAS  Google Scholar 

  14. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3):265–273

    Article  PubMed  CAS  Google Scholar 

  15. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968

    Article  PubMed  CAS  Google Scholar 

  16. Reiter L, Rinner O, Picotti P et al (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8(5):430–435

    Article  PubMed  CAS  Google Scholar 

  17. Fusaro VA, Mani DR, Mesirov JP, Carr SA (2009) Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 27(2):190–198

    Article  PubMed  CAS  Google Scholar 

  18. Unwin RD, Griffiths JR, Whetton AD (2009) A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS). Nat Protoc 4(6):870–877

    Article  PubMed  CAS  Google Scholar 

  19. Sherwood CA, Eastham A, Lee LW et al (2009) MaRiMba: a software application for spectral library-based MRM transition list assembly. J Proteome Res 8(10):4396–4405

    Article  PubMed  CAS  Google Scholar 

  20. Mead JA, Bianco L, Ottone V et al (2009) MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions. Mol Cell Proteomics 8(4):696–705

    Article  PubMed  CAS  Google Scholar 

  21. Sherman J, McKay MJ, Ashman K, Molloy MP (2009) How specific is my SRM?: the issue of precursor and product ion redundancy. Proteomics 9(5):1120–1123

    Article  PubMed  CAS  Google Scholar 

  22. Mackintosh JA, Veal DA, Karuso P (2005) Fluoroprofile, a fluorescence-based assay for rapid and sensitive quantitation of proteins in solution. Proteomics 5(18):4673–4677

    Article  PubMed  CAS  Google Scholar 

  23. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  PubMed  CAS  Google Scholar 

  24. Mallick P, Schirle M, Chen SS et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Petzold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Batth, T.S., Keasling, J.D., Petzold, C.J. (2012). Targeted Proteomics for Metabolic Pathway Optimization. In: Keller, N., Turner, G. (eds) Fungal Secondary Metabolism. Methods in Molecular Biology, vol 944. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-122-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-122-6_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-121-9

  • Online ISBN: 978-1-62703-122-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics