Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553. doi:10.1126/science.1068999
Yu J-Y, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052. doi:10.1073/pnas.092143499
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958. doi:10.1101/gad.981002
Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508. doi:10.1038/nbt0502-505
Ter Brake O, t’Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B (2008) Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 16:557–564. doi:10.1038/sj.mt.6300382
Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231. doi:10.1038/nbt1052
McAnuff MA, Rettig GR, Rice KG (2007) Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci 96:2922–2930. doi:10.1002/jps.20968
Klinghoffer RA, Magnus J, Schelter J, Mehaffey M, Coleman C, Cleary MA (2010) Reduced seed region-based off-target activity with lentivirus-mediated RNAi. RNA 16:879–884. doi:10.1261/rna.1977810
Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864. doi:10.1126/science.1065329
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739
Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865. doi:10.1016/j.molcel.2004.12.002
Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi:10.1038/35053110
Catalanotto C, Azzalin G, Macino G, Cogoni C (2000) Gene silencing in worms and fungi. Nature 404:245. doi:10.1038/35005169
Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–132
Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200
Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296. doi:10.1038/35005107
Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321
Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980. doi:10.1101/gad.1187904
Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol 14:787–791. doi:10.1016/j.cub.2004.03.008
Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442. doi:10.1101/gad.1064703
Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, Johnston BH (2010) Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16:106–117. doi:10.1261/rna.1894510
Rao DD, Maples PB, Senzer N, Kumar P, Wang Z, Pappen BO, Yu Y, Haddock C, Jay C, Phadke AP et al (2010) Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference. Cancer Gene Ther 17:780–791. doi:10.1038/cgt.2010.35
Phadke AP, Jay CM, Wang Z, Chen S, Liu S, Haddock C, Kumar P, Pappen BO, Rao DD, Templeton NS et al (2011) In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 30:715–726. doi:10.1089/dna.2011.1240
Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL, Lich JD, Ting JP-Y, Reed W (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol 6:7. doi:10.1186/1472-6750-6-7
Li L, Lin X, Khvorova A, Fesik SW, Shen Y (2007) Defining the optimal parameters for hairpin-based knockdown constructs. RNA 13:1765–1774. doi:10.1261/rna.599107
Kim D-H, Behlke MA, Rose SD, Chang M-S, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226. doi:10.1038/nbt1051
Rose SD, Kim D-H, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33:4140–4156. doi:10.1093/nar/gki732
Yu J-Y, Taylor J, DeRuiter SL, Vojtek AB, Turner DL (2003) Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors. Mol Ther 7:228–236
Miyagishi M, Sumimoto H, Miyoshi H, Kawakami Y, Taira K (2004) Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med 6:715–723. doi:10.1002/jgm.556
Mcintyre GJ, Yu Y-H, Lomas M, Fanning GC (2011) The effects of stem length and core placement on shRNA activity. BMC Mol Biol 12:34. doi:10.1186/1471-2199-12-34
Vlassov AV, Korba B, Farrar K, Mukerjee S, Seyhan AA, Ilves H, Kaspar RL, Leake D, Kazakov SA, Johnston BH (2007) shRNAs targeting hepatitis C: effects of sequence and structural features, and comparison with siRNA. Oligonucleotides 17:223–236. doi:10.1089/oli.2006.0069
Terasawa K, Shimizu K, Tsujimoto G (2011) Synthetic pre-miRNA-based shRNA as potent RNAi triggers. J Nucleic Acids 2011:131579. doi:10.4061/2011/131579
Ge Q, Dallas A, Ilves H, Shorenstein J, Behlke MA, Johnston BH (2010) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA 16:118–130. doi:10.1261/rna.1901810
Lee NS, Dohjima T, Bauer G, Li H, Li M-J, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505. doi:10.1038/nbt0502-500
Mcintyre GJ, Fanning GC (2006) Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol 6:1. doi:10.1186/1472-6750-6-1
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. doi:10.1126/science.1064921
Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31:700–707
Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL, Ferry N, Weinberg MS, Arbuthnot P (2006) Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther 13:411–421. doi:10.1016/j.ymthe.2005.10.013
Boden D (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 32:1154–1158. doi:10.1093/nar/gkh278
Lambeth LS, Zhao Y, Smith LP, Kgosana L, Nair V (2009) Targeting Marek’s disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine 27:298–306. doi:10.1016/j.vaccine.2008.10.023
Hinton TM, Wise TG, Cottee PA, Doran TJ (2008) Native microRNA loop sequences can improve short hairpin RNA processing for virus gene silencing in animal cells. J RNAi Gene Silencing 4:295–301
Chung K-H, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD, Vojtek AB, Turner DL (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 34:e53. doi:10.1093/nar/gkl143
Zhou H, Xia X-G, Xu Z (2005) An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res 33:e62. doi:10.1093/nar/gni061
Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR et al (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288. doi:10.1038/ng1650
Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, Lowe SW (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295. doi:10.1038/ng1651
Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14:1834–1844. doi:10.1261/rna.1062908
Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541. doi:10.1038/nature04791
Ehlert EM, Eggers R, Niclou SP, Verhaagen J (2010) Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neurosci 11:20. doi:10.1186/1471-2202-11-20
Martin JN, Wolken N, Brown T, Dauer WT, Ehrlich ME, Gonzalez-Alegre P (2011) Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther 18:666–673. doi:10.1038/gt.2011.10
McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105:5868–5873. doi:10.1073/pnas.0801775105
Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B (2003) Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 31:5033–5038
Rao MK, Wilkinson MF (2006) Tissue-specific and cell type-specific RNA interference in vivo. Nat Protoc 1:1494–1501. doi:10.1038/nprot.2006.260
Nielsen TT, Marion IV, Hasholt L, Lundberg C (2009) Neuron-specific RNA interference using lentiviral vectors. J Gene Med 11:559–569. doi:10.1002/jgm.1333
Dong K, Wang R, Wang X, Lin F, Shen J-J, Gao P, Zhang H-Z (2009) Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 113:443–456. doi:10.1007/s10549-008-9956-x
Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26733–26736. doi:10.1074/jbc.R100032200
Lee Y, Kim M, Han J, Yeom K-H, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385
Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298
Czauderna F, Santel A, Hinz M, Fechtner M, Durieux B, Fisch G, Leenders F, Arnold W, Giese K, Klippel A et al (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 31:e127
Kobayashi S, Higuchi T, Anzai K (2005) Application of the BC1 RNA gene promoter for short hairpin RNA expression in cultured neuronal cells. Biochem Biophys Res Commun 334:1305–1309. doi:10.1016/j.bbrc.2005.07.033
Scherer LJ, Frank R, Rossi JJ (2007) Optimization and characterization of tRNA-shRNA expression constructs. Nucleic Acids Res 35:2620–2628. doi:10.1093/nar/gkm103
Gunnery S, Ma Y, Mathews MB (1999) Termination sequence requirements vary among genes transcribed by RNA polymerase III. J Mol Biol 286:745–757. doi:10.1006/jmbi.1998.2518
Murphy S, Tripodi M, Melli M (1986) A sequence upstream from the coding region is required for the transcription of the 7SK RNA genes. Nucleic Acids Res 14:9243–9260
Das G, Henning D, Wright D, Reddy R (1988) Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J 7:503–512
Kunkel GR, Pederson T (1988) Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev 2:196–204
Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620. doi:10.1101/gad.1018902
Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603–608. doi:10.1016/j.cbpa.2005.10.008
Hayashi K (1981) Organization of sequences related to U6 RNA in the human genome. Nucleic Acids Res 9:3379–3388
Domitrovich AM, Kunkel GR (2003) Multiple, dispersed human U6 small nuclear RNA genes with varied transcriptional efficiencies. Nucleic Acids Res 31:2344–2352
Lambeth LS, Moore RJ, Muralitharan M, Dalrymple BP, Mcwilliam S, Doran TJ (2005) Characterisation and application of a bovine U6 promoter for expression of short hairpin RNAs. BMC Biotechnol 5:13. doi:10.1186/1472-6750-5-13
Lambeth LS, Wise TG, Moore RJ, Muralitharan MS, Doran TJ (2006) Comparison of bovine RNA polymerase III promoters for short hairpin RNA expression. Anim Genet 37:369–372. doi:10.1111/j.1365-2052.2006.01468.x
Kudo T, Sutou S (2005) Usage of putative chicken U6 promoters for vector-based RNA interference. J Reprod Dev 51:411–417
Wise TG, Schafer DJ, Lambeth LS, Tyack SG, Bruce MP, Moore RJ, Doran TJ (2007) Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs. Anim Biotechnol 18:153–162. doi:10.1080/10495390600867515
Zenke K, Kim KH (2008) Novel fugu U6 promoter driven shRNA expression vector for efficient vector based RNAi in fish cell lines. Biochem Biophys Res Commun 371:480–483. doi:10.1016/j.bbrc.2008.04.116
Boonanuntanasarn S, Panyim S, Yoshizaki G (2009) Usage of putative zebrafish U6 promoters to express shRNA in Nile tilapia and shrimp cell extracts. Transgenic Res 18:323–325. doi:10.1007/s11248-009-9249-0
Hu S, Ni W, Hazi W, Zhang H, Zhang N, Meng R, Chen C (2011) Cloning and functional analysis of sheep U6 promoters. Anim Biotechnol 22:170–174. doi:10.1080/10495398.2011.580669
Chuang C-K, Lee K-H, Fan C-T, Su Y-S (2009) Porcine type III RNA polymerase III promoters for short hairpin RNA expression. Anim Biotechnol 20:34–39. doi:10.1080/10495390802603064
Myslinski E, Amé JC, Krol A, Carbon P (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29:2502–2509
Koper-Emde D, Herrmann L, Sandrock B, Benecke B-J (2011) RNA interference by small hairpin RNAs synthesised under control of the human 7S K RNA promoter. Biol Chem 385:791–794. doi:10.1515/BC.2004.103
Bannister SC, Wise TG, Cahill DM, Doran TJ (2007) Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnol 7:79. doi:10.1186/1472-6750-7-79
Cummins D, Doran TJ, Tyack S, Purcell D, Hammond J (2008) Identification and characterisation of the porcine 7SK RNA polymerase III promoter for short hairpin RNA expression. J RNAi Gene Silencing 4:289–294
Mäkinen PI, Koponen JK, Kärkkäinen A-M, Malm TM, Pulkkinen KH, Koistinaho J, Turunen MP, Ylä-Herttuala S (2006) Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 8:433–441. doi:10.1002/jgm.860
An DS, Qin FX-F, Auyeung VC, Mao SH, Kung SKP, Baltimore D, Chen ISY (2006) Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 14:494–504. doi:10.1016/j.ymthe.2006.05.015
Farris AD, Gross JK, Hanas JS, Harley JB (1996) Genes for murine Y1 and Y3 Ro RNAs have class 3 RNA polymerase III promoter structures and are unlinked on mouse chromosome 6. Gene 174:35–42
Grimm D, Wang L, Lee JS, Schürmann N, Gu S, Börner K, Storm TA, Kay MA (2010) Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 120:3106–3119. doi:10.1172/JCI43565
Rumi M, Ishihara S, Aziz M, Kazumori H, Ishimura N, Yuki T, Kadota C, Kadowaki Y, Kinoshita Y (2006) RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. Biochem Biophys Res Commun 339:540–547. doi:10.1016/j.bbrc.2005.11.037
Galli G, Hofstetter H, Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294:626–631
Xia X-G, Zhou H, Samper E, Melov S, Xu Z (2006) Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet 2:e10. doi:10.1371/journal.pgen.0020010
Takahashi Y, Yamaoka K, Nishikawa M, Takakura Y (2009) Quantitative and temporal analysis of gene silencing in tumor cells induced by small interfering RNA or short hairpin RNA expressed from plasmid vectors. J Pharm Sci 98:74–80. doi:10.1002/jps.21398
Dyer V, Ely A, Bloom K, Weinberg M, Arbuthnot P (2010) tRNA Lys3 promoter cassettes that efficiently express RNAi-activating antihepatitis B virus short hairpin RNAs. Biochem Biophys Res Commun 398:640–646. doi:10.1016/j.bbrc.2010.06.122
Weiwei M, Zhenhua X, Feng L, Hang N, Yuyang J (2009) A significant increase of RNAi efficiency in human cells by the CMV enhancer with a tRNAlys promoter. J Biomed Biotechnol 2009:514287. doi:10.1155/2009/514287
Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010. doi:10.1038/nbt739
Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333
Denti MA, Rosa A, Sthandier O, De Angelis FG, Bozzoni I (2004) A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther 10:191–199
Huang M, Jia F-J, Yan Y-C, Guo L-H, Li Y-P (2006) Transactivated minimal E1b promoter is capable of driving the expression of short hairpin RNA. J Virol Methods 134:48–54. doi:10.1016/j.jviromet.2005.11.016
Konstantinova P, De Vries W, Haasnoot J, Ter Brake O, De Haan P, Berkhout B (2006) Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther 13:1403–1413. doi:10.1038/sj.gt.3302786
Liu YP, Haasnoot J, Ter Brake O, Berkhout B, Konstantinova P (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 36:2811–2824. doi:10.1093/nar/gkn109
Chen SC-Y, Stern P, Guo Z, Chen J (2011) Expression of multiple artificial microRNAs from a chicken miRNA126-based lentiviral vector. PLoS One 6:e22437. doi:10.1371/journal.pone.0022437
Dong K, Wang R, Wang X, Lin F, Shen J-J, Gao P, Zhang H-Z (2008) Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 113:443–456. doi:10.1007/s10549-008-9956-x
Giering JC, Grimm D, Storm TA, Kay MA (2008) Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 16:1630–1636. doi:10.1038/mt.2008.144
Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 13:121–128
van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D, Holstege FCP, Brummelkamp TR, Agami R, Clevers H (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615. doi:10.1038/sj.embor.embor865
Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101:10380–10385. doi:10.1073/pnas.0403954101
Szulc J, Wiznerowicz M, Sauvain M-O, Trono D, Aebischer P (2006) A versatile tool for conditional gene expression and knockdown. Nat Meth 3:109–116. doi:10.1038/nmeth846
Herold MJ, van den Brandt J, Seibler J, Reichardt HM (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci U S A 105:18507–18512. doi:10.1073/pnas.0806213105
No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 93:3346–3351
Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci U S A 101:1927–1932. doi:10.1073/pnas.0306111101
Rangasamy D, Tremethick DJ, Greaves IK (2008) Gene knockdown by ecdysone-based inducible RNAi in stable mammalian cell lines. Nat Protoc 3:79–88. doi:10.1038/nprot.2007.456
Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865
McCaffrey AP, Meuse L, Pham T-TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39. doi:10.1038/418038a
McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21:639–644. doi:10.1038/nbt824
Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247
Devroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15
Bromberg-White JL, Webb CP, Patacsil VS, Miranti CK, Williams BO, Holmen SL (2004) Delivery of short hairpin RNA sequences by using a replication-competent avian retroviral vector. J Virol 78:4914–4916
Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol 61:3004–3012
Déglon N, Tseng JL, Bensadoun JC, Zurn AD, Arsenijevic Y, Pereira de Almeida L, Zufferey R, Trono D, Aebischer P (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11:179–190. doi:10.1089/10430340050016256
Abbas-Terki T, Blanco-Bose W, Déglon N, Pralong W, Aebischer P (2002) Lentiviral-mediated RNA interference. Hum Gene Ther 13:2197–2201. doi:10.1089/104303402320987888
Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406. doi:10.1038/ng1117
Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823. doi:10.1126/science.1171242
Berkhout B (2009) Toward a durable anti-HIV gene therapy based on RNA interference. Ann N Y Acad Sci 1175:3–14. doi:10.1111/j.1749-6632.2009.04972.x
Tomar RS, Matta H, Chaudhary PM (2003) Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22:5712–5715. doi:10.1038/sj.onc.1206733
Büning H, Perabo L, Coutelle O, Quadt Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733. doi:10.1002/jgm.1205
Saydam O, Glauser DL, Heid I, Turkeri G, Hilbe M, Jacobs AH, Ackermann M, Fraefel C (2005) Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 12:803–812. doi:10.1016/j.ymthe.2005.07.534
Hong C-S, Goins WF, Goss JR, Burton EA, Glorioso JC (2006) Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-beta peptide in vivo. Gene Ther 13:1068–1079. doi:10.1038/sj.gt.3302719
Nicholson LJ, Philippe M, Paine AJ, Mann DA, Dolphin CT (2005) RNA interference mediated in human primary cells via recombinant baculoviral vectors. Mol Ther 11:638–644. doi:10.1016/j.ymthe.2004.12.010
Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, Soifer H, Gatignol A, Riggs A, Rossi JJ (2007) Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 35:5154–5164. doi:10.1093/nar/gkm543
Grimm D, Kay MA (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15:878–888. doi:10.1038/sj.mt.6300116
Boden D, Pusch O, Lee F, Tucker L, Ramratnam B (2003) Human immunodeficiency virus type 1 escape from RNA interference. J Virol 77:11531–11535
Liu YP, von Eije KJ, Schopman NCT, Westerink J-T, Ter Brake O, Haasnoot J, Berkhout B (2009) Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 17:1712–1723. doi:10.1038/mt.2009.176
Liu YP, Haasnoot J, Berkhout B (2007) Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 35:5683–5693. doi:10.1093/nar/gkm596
Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS (2008) The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One 3:e2602. doi:10.1371/journal.pone.0002602
Sano M, Li H, Nakanishi M, Rossi JJ (2008) Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther 16:170–177. doi:10.1038/sj.mt.6300298
Henry SD, van der Wegen P, Metselaar HJ, Tilanus HW, Scholte BJ, van der Laan LJW (2006) Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther 14:485–493. doi:10.1016/j.ymthe.2006.04.012
Anderson J, Akkina R (2005) HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2:1. doi:10.1186/1742-6405-2-1
Hinton TM, Doran TJ (2008) Inhibition of chicken anaemia virus replication using multiple short-hairpin RNAs. Antiviral Res 80:143–149. doi:10.1016/j.antiviral.2008.05.009
Ter Brake O, Konstantinova P, Ceylan M, Berkhout B (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14:883–892. doi:0.1016/j.ymthe.2006.07.007
Song J, Giang A, Lu Y, Pang S, Chiu R (2008) Multiple shRNA expressing vector enhances efficiency of gene silencing. BMB Rep 41:358–362
Gou D, Weng T, Wang Y, Wang Z, Zhang H, Gao L, Chen Z, Wang P, Liu L (2007) A novel approach for the construction of multiple shRNA expression vectors. J Gene Med 9:751–763. doi:10.1002/jgm.1080
Cheng TL, Teng CF, Tsai WH, Yeh CW, Wu MP, Hsu HC, Hung CF, Chang WT (2009) Multitarget therapy of malignant cancers by the head-to-tail tandem array multiple shRNAs expression system. Cancer Gene Ther 16:516–531. doi:10.1038/cgt.2008.102
Gonzalez S, Castanotto D, Li H, Olivares S, Jensen MC, Forman SJ, Rossi JJ, Cooper LJN (2005) Amplification of RNAi-targeting HLA mRNAs. Mol Ther 11:811–818. doi:10.1016/j.ymthe.2004.12.023
Mcintyre GJ, Groneman JL, Tran A, Applegate TL (2008) An infinitely expandable cloning strategy plus repeat-proof PCR for working with multiple shRNA. PLoS One 3:e3827. doi:10.1371/journal.pone.0003827.t001
Lambeth LS, Van Hateren NJ, Wilson SA, Nair V (2010) A direct comparison of strategies for combinatorial RNA interference. BMC Mol Biol 11:77. doi:10.1186/1471-2199-11-77
Akashi H, Miyagishi M, Yokota T, Watanabe T, Hino T, Nishina K, Kohara M, Taira K (2005) Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol Biosyst 1:382–390. doi:10.1039/b510159j
Barichievy S, Saayman S, Von Eije KJ, Morris KV, Arbuthnot P, Weinberg MS (2007) The inhibitory efficacy of RNA POL III-expressed long hairpin RNAs targeted to untranslated regions of the HIV-1 5′ long terminal repeat. Oligonucleotides 17:419–431. doi:10.1089/oli.2007.0095
Weinberg MS, Ely A, Barichievy S, Crowther C, Mufamadi S, Carmona S, Arbuthnot P (2007) Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Mol Ther 15:534–541. doi:10.1038/sj.mt.6300077
Konstantinova P, Ter Brake O, Haasnoot J, De Haan P, Berkhout B (2007) Trans-inhibition of HIV-1 by a long hairpin RNA expressed within the viral genome. Retrovirology 4:15. doi:10.1186/1742-4690-4-15
Sun D, Melegari M, Sridhar S, Rogler CE, Zhu L (2006) Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 41:59–63
Zhu X, Santat LA, Chang MS, Liu J, Zavzavadjian JR, Wall EA, Kivork C, Simon MI, Fraser ID (2007) A versatile approach to multiple gene RNA interference using microRNA-based short hairpin RNAs. BMC Mol Biol 8:98. doi:10.1186/1471-2199-8-98
Das RM, Van Hateren NJ, Howell GR, Farrell ER, Bangs FK, Porteous VC, Manning EM, McGrew MJ, Ohyama K, Sacco MA et al (2006) A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 294:554–563. doi:10.1016/j.ydbio.2006.02.020
Aagaard LA, Zhang J, von Eije KJ, Li H, Saetrom P, Amarzguioui M, Rossi JJ (2008) Engineering1 and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 15:1536–1549. doi:10.1038/gt.2008.147
Yang X, Haurigot V, Zhou S, Luo G, Couto LB (2010) Inhibition of hepatitis C virus replication using adeno-associated virus vector delivery of an exogenous anti-hepatitis C virus microRNA cluster. Hepatology 52:1877–1887. doi:10.1002/hep.23908
Bartel DP, Chen C-Z (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400. doi:10.1038/nrg1328
Mcintyre GJ, Arndt AJ, Gillespie KM, Mak WM, Fanning GC (2011) A comparison of multiple shRNA expression methods for combinatorial RNAi. Genet Vaccines Ther 9:9. doi:10.1186/1479-0556-9-9
Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592. doi:10.1101/gad.1026202
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Lambeth, L.S., Smith, C.A. (2013). Short Hairpin RNA-Mediated Gene Silencing. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_12
Download citation
DOI: https://doi.org/10.1007/978-1-62703-119-6_12
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-118-9
Online ISBN: 978-1-62703-119-6
eBook Packages: Springer Protocols