Skip to main content

Cis-Acting Ribozymes for the Production of RNA In Vitro Transcripts with Defined 5′ and 3′ Ends

  • Protocol
  • First Online:
Recombinant and In Vitro RNA Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 941))

Abstract

The use of in vitro transcribed RNA is often limited by sequence constraints at the 5′-end and the problem of transcript heterogeneity which can occur at both the 5′- and 3′-ends. This chapter describes the use of cis-acting ribozymes, 5′-end hammerhead (HH) and 3′-end hepatitis delta virus (HDV), for direct transcriptional processing to yield target RNAs with precisely defined ends. The method is focused on the use of the pRZ and p2RZ plasmids that are designed to simplify the production of such dual ribozyme templates. These plasmids each bear a 3′-HDV modified with a unique restriction site that allows the ribozyme to remain on the plasmid and, therefore, be omitted from the cloning procedure. The additional steps required to design a unique hammerhead ribozyme tailored to the 5′-end of each target RNA are detailed. In most cases, a transcriptional template bearing a 5′-HH ribozyme and a 3′-HDV ribozyme can be achieved by cloning a single PCR product into either the pRZ or p2RZ vector. Protocols for optimization of transcription yields from these templates and the isolation of the homogeneous target RNA are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milligan JF, Uhlenbeck OC. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62.

    Article  PubMed  CAS  Google Scholar 

  2. Pokrovskaya ID, Gurevich VV. In vitro transcription: preparative RNA yields in analytical scale reactions. Anal Biochem. 1994;220:420–3.

    Article  PubMed  CAS  Google Scholar 

  3. Helm M, Brule H, Giege R, Florentz C. More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA. 1999;5:618–21.

    Article  PubMed  CAS  Google Scholar 

  4. Pleiss JA, Derrick ML, Uhlenbeck OC. T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA. 1998;4:1313–7.

    Article  PubMed  CAS  Google Scholar 

  5. Lee SS, Kang C. Two base pairs at −9 and −8 distinguish between the bacteriophage T7 and SP6 promoters. J Biol Chem. 1993;268:19299–304.

    PubMed  CAS  Google Scholar 

  6. Huang F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 2003;31:e8.

    Article  PubMed  Google Scholar 

  7. Sampson JR, Uhlenbeck OC. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci USA. 1988;85:1033–7.

    Article  PubMed  CAS  Google Scholar 

  8. Kao C, Zheng M, Rudisser S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA. 1999;5:1268–72.

    Article  PubMed  CAS  Google Scholar 

  9. Sherlin LD, Bullock TL, Nissan TA, Perona JJ, Lariviere FJ, Uhlenbeck OC, Scaringe SA. Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA. 2001;7:1671–8.

    PubMed  CAS  Google Scholar 

  10. Coleman TM, Wang G, Huang F. Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res. 2004;32:e14.

    Article  PubMed  Google Scholar 

  11. Inoue H, Hayase Y, Iwai S, Ohtsuka E. Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett. 1987;215:327–30.

    Article  PubMed  CAS  Google Scholar 

  12. Lapham J, Crothers DM. RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. RNA. 1996;2:289–96.

    PubMed  CAS  Google Scholar 

  13. Ziehler WA, Engelke DR. Synthesis of small RNA transcripts with discrete 5′ and 3′ ends. Biotechniques. 1996;20:622–4.

    PubMed  CAS  Google Scholar 

  14. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA. 1997;94:4262–6.

    Article  PubMed  CAS  Google Scholar 

  15. Perrotta AT, Been MD. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence. Biochemistry. 1992;31:16–21.

    Article  PubMed  CAS  Google Scholar 

  16. Ferre-D’Amare AR, Doudna JA. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 1996;24:977–8.

    Article  PubMed  Google Scholar 

  17. Cameron V, Uhlenbeck OC. 3′-Phosphatase activity in T4 polynucleotide kinase. Biochemistry. 1977;16:5120–6.

    Article  PubMed  CAS  Google Scholar 

  18. Povirk LF, Steighner RJ. High ionic strength promotes selective 3′-phosphatase activity of T4 polynucleotide kinase. Biotechniques. 1990;9:562.

    PubMed  CAS  Google Scholar 

  19. Walker SC, Avis JM, Conn GL. General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res. 2003;31:e82.

    Article  PubMed  Google Scholar 

  20. Schenborn ET, Mierendorf Jr RC. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 1985;13:6223–36.

    Article  PubMed  CAS  Google Scholar 

  21. Birikh KR, Heaton PA, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997;245:1–16.

    Article  PubMed  CAS  Google Scholar 

  22. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.

    Article  PubMed  CAS  Google Scholar 

  23. Hofacker IL (2004) RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics Chapter 12, Unit 12 2

    Google Scholar 

  24. Rosenstein SP, Been MD. Self-cleavage of hepatitis delta virus genomic strand RNA is enhanced under partially denaturing conditions. Biochemistry. 1990;29:8011–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graeme L. Conn or Scott C. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Avis, J.M., Conn, G.L., Walker, S.C. (2013). Cis-Acting Ribozymes for the Production of RNA In Vitro Transcripts with Defined 5′ and 3′ Ends. In: Conn, G. (eds) Recombinant and In Vitro RNA Synthesis. Methods in Molecular Biology, vol 941. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-113-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-113-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-112-7

  • Online ISBN: 978-1-62703-113-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics