Skip to main content

Discovering Interacting Domains and Motifs in Protein–Protein Interactions

  • Protocol
  • First Online:
Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 939))

Abstract

Many important biological processes, such as the signaling pathways, require protein–protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3–10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain–SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins’ sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins’ 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain–SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng SK et al (2003) InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucleic Acids Res 31:251–254

    Article  PubMed  CAS  Google Scholar 

  2. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

  3. Finn RD, Marshall M, Bateman A (2005) iPfam: visualization of protein–protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21(3):410–412

    Article  PubMed  CAS  Google Scholar 

  4. Stein A, Céol A, Aloy P (2011) 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 39:D718–D723

    Article  PubMed  Google Scholar 

  5. Kim WK et al (2006) The many faces of protein-protein interactions: a compendium of interface geometry. PLoS Comput Biol 2(9):e124

    Article  PubMed  Google Scholar 

  6. Jefferson ER et al (2007) SNAPPI-DB: a database and API of structures, iNterfaces and alignments for protein-protein interactions. Nucleic Acids Res 35(Database Issue):D580–D589

    Article  PubMed  CAS  Google Scholar 

  7. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278(5346):2075–2080

    Article  PubMed  CAS  Google Scholar 

  8. Sudol M (1998) From Src homology domains to other signaling modules: proposal of the ‘protein recognition code’. Oncogene 17:1469–1474

    Article  PubMed  CAS  Google Scholar 

  9. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579(15):3342–3345

    Article  PubMed  CAS  Google Scholar 

  10. Neduva V, Russell RB (2006) Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol 17(5):465–471

    Article  PubMed  CAS  Google Scholar 

  11. Diella F et al (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603

    Article  PubMed  CAS  Google Scholar 

  12. Fox-Erlich S, Schiller MR, Gryk MR (2009) Structural conservation of a short, functional, peptide-sequence motif. Front Biosci 14:1143–1151

    Article  PubMed  CAS  Google Scholar 

  13. Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12:1–5

    Article  Google Scholar 

  14. Puntervoll P et al (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630

    Article  PubMed  CAS  Google Scholar 

  15. Rajasekaran S et al (2009) Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Res 37(Database Issue):D185–D190

    Article  PubMed  CAS  Google Scholar 

  16. Neduva V et al (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3(12):e405

    Article  PubMed  Google Scholar 

  17. Davey NE, Shields DC, Edwards RJ (2006) SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Res 34(12):3546–3554

    Article  PubMed  CAS  Google Scholar 

  18. Edwards RJ, Davey NE, Shields DC (2007) SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. PLoS One 2(10):e967

    Article  PubMed  Google Scholar 

  19. Tan SH et al (2006) A correlated motif approach for finding short linear motifs from protein interaction networks. BMC Bioinformatics 7:502

    Article  PubMed  Google Scholar 

  20. Leung HC et al (2009) Clustering-based approach for predicting motif pairs from protein interaction data. J Bioinform Comput Biol 7(4):701–716

    Article  PubMed  CAS  Google Scholar 

  21. Boyen P et al (2009) SLIDER: mining correlated motifs in protein-protein interaction networks. In: Proceedings of the 2009 ninth IEEE international conference on data mining (ICDM) Miami, FL, USA, on December 6–9, pp. 716–721

    Google Scholar 

  22. Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7:188–197

    Article  PubMed  CAS  Google Scholar 

  23. von Mering C et al (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887):399–403

    Article  Google Scholar 

  24. Hugo W et al (2010) SLiM on Diet: finding short linear motifs on domain interaction interfaces in Protein Data Bank. Bioinformatics 26(8):1036–1042

    Article  PubMed  CAS  Google Scholar 

  25. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  26. Finn RD et al (2008) The Pfam protein families database. Nucleic Acids Res 36(Database Issue):D281–D288

    PubMed  CAS  Google Scholar 

  27. Andreeva A et al (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36(Database Issue):419–425

    Google Scholar 

  28. Cuff AL et al (2009) The CATH classification revisited–architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Res 37(Database Issue):D310–D314

    Article  PubMed  CAS  Google Scholar 

  29. Stark C et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39(Database Issue):D698–D704

    Article  PubMed  Google Scholar 

  30. Dafas P et al (2004) Using convex hulls to extract interaction interfaces from known structures. Bioinformatics 20(10):1486–1490

    Article  PubMed  CAS  Google Scholar 

  31. Alexandrov NN, Fischer D (1996) Analysis of topological and nontopological structural similarities in the PDB: new examples with old structures. Proteins 25(3):354–365

    Article  PubMed  CAS  Google Scholar 

  32. Aung Z, Tan K (2006) MatAlign: precise protein structure comparison by matrix alignment. J Bioinform Comput Biol 4(6):1197–1216

    Article  PubMed  CAS  Google Scholar 

  33. Henikoff S, Henikoff JG (2005) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89(22):10915–10919

    Article  Google Scholar 

  34. Stein A, Aloy P (2010) Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. PLoS Comput Biol 6(5):e1000789

    Article  PubMed  Google Scholar 

  35. Torrance JW et al (2005) Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. J Mol Biol 347(3):565–581

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to See-Kiong Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hugo, W., Sung, WK., Ng, SK. (2013). Discovering Interacting Domains and Motifs in Protein–Protein Interactions. In: Mamitsuka, H., DeLisi, C., Kanehisa, M. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 939. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-107-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-107-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-106-6

  • Online ISBN: 978-1-62703-107-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics