Advertisement

Phytoplasma pp 87-108 | Cite as

Molecular Identification of Phytoplasma Vector Species

  • Sabrina BertinEmail author
  • Domenico Bosco
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 938)

Abstract

The correct identification of the insect species involved in phytoplasma transmission is an essential condition for managing phytoplasma diseases and employing control strategies. The taxonomy of leafhoppers, planthoppers, and psyllids traditionally relies on morphological characters. Unfortunately, the identification of the distinctive traits requires skills and experience possessed by only a few specialist entomologists. In this chapter we provide protocols for the molecular identification of phytoplasma-vector species, mainly based on the polymerase chain reaction (PCR) amplification of mitochondrial and ribosomal DNA. Protocols for the application of molecular identification keys to dried specimens stored in insect collections are also provided. The same total DNA preparations can serve as a PCR template for either insect species or phytoplasma identification. The molecular identification methods can be applied not only to males, but also to nymphs and females for which a morphological taxonomic tool is generally unavailable. We suggest that taxonomic databases of planthoppers, leafhoppers, and psyllids should include species-specific DNA sequences as soon as they become available.

Key words

Hemiptera Mitochondrial DNA Molecular identification PCR Ribosomal DNA Vector species 

Notes

Acknowledgement

The research carried out by the authors on molecular identification of insect species is supported by the Italian Ministry of Research (MIUR), under the grant PRIN 2008 “Identification of species and intra-specific variants of sap-sucking and parasitoid insects with molecular markers.”

References

  1. 1.
    Weintraub PG, Beanland LeA (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111PubMedCrossRefGoogle Scholar
  2. 2.
    Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: a thriving tower of Babel. Annu Rev Entomol 45:1–54PubMedCrossRefGoogle Scholar
  3. 3.
    Behura SK (2006) Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15:3087–3113PubMedCrossRefGoogle Scholar
  4. 4.
    Hebert PDN et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  5. 5.
    Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S96–S99CrossRefGoogle Scholar
  6. 6.
    Marzachì C, Veratti F, Bosco D (1998) Direct PCR detection of phytoplasmas in experimentally infected insects. Ann Appl Biol 133:45–54CrossRefGoogle Scholar
  7. 7.
    Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  8. 8.
    Gilbert MTP et al (2007) DNA extraction from dry museum beetles without conferring external morphological damage. PLoS One 2:e272PubMedCrossRefGoogle Scholar
  9. 9.
    Bertin S et al (2010) Molecular identification of the Hyalesthes species (Hemiptera: Cixiidae) occurring in vineyard agroecosystems. Ann Appl Biol 157:435–445CrossRefGoogle Scholar
  10. 10.
    Bertin S et al (2010) Molecular differentiation of four Reptalus species (Hemiptera: Cixiidae). Bull Entomol Res 100:551–558PubMedCrossRefGoogle Scholar
  11. 11.
    Tedeschi R, Nardi F (2010) DNA-based discrimination and frequency of phytoplasma infection in the two hawthorn-feeding species, Cacopsylla melanoneura and Cacopsylla affinis, in northwestern Italy. Bull Entomol Res 100:741–747PubMedCrossRefGoogle Scholar
  12. 12.
    Jarausch W et al (2010) Development of specific primers for the molecular identification of Cacopsylla picta, the main vector of apple proliferation disease. In: Bertaccini A, Lavina A, Torres E (eds) Current status and perspectives of phytoplasma disease research and management. COST Action FA0807. http://costphytoplasma.eu/PDF%20files/WG%20BookwithiISBN.pdf
  13. 13.
    Mandrioli M (2008) Insect collections and DNA analyses: how to manage collections? Mus Manag Curatorship 23:193–199CrossRefGoogle Scholar
  14. 14.
    Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945PubMedCrossRefGoogle Scholar
  15. 15.
    Bosco D et al (2002) DNA-based methods for the detection and the identification of phytoplasmas in insect vector extracts. Mol Biotechnol 22:9–18PubMedCrossRefGoogle Scholar
  16. 16.
    Johannesen J et al (2008) Invasion biology and host specificity of the grapevine yellows disease vector Hyalesthes obsoletus in Europe. Entomol Exp Appl 126:217–227CrossRefGoogle Scholar
  17. 17.
    Imo M et al (2011) Highly polymorphic di- and trinucleotide microsatellite markers for the grapevine yellows disease vector Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Eur J Entomol 108:161–163Google Scholar
  18. 18.
    Bertin S et al (2007) Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131:275–285PubMedCrossRefGoogle Scholar
  19. 19.
    Papura D et al (2009) Comparing the spatial genetic structures of the Flavescence dorée phytoplasma and its leafhopper vector Scaphoideus titanus. Infect Genet Evol 9:867–876PubMedCrossRefGoogle Scholar
  20. 20.
    Sauvion N et al (2009) Nine polymorphic microsatellite loci from the psyllid Cacopsylla pruni (Scopoli), the vector of European stone fruit yellows. Mol Ecol Resour 9:1196–1199PubMedCrossRefGoogle Scholar
  21. 21.
    Hoy MA (2003) Insect molecular genetics, 2nd edn. Academic Press/Elsevier, San Diego, CAGoogle Scholar
  22. 22.
    Simon C et al (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  23. 23.
    Simon C et al (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst 37:545–579CrossRefGoogle Scholar
  24. 24.
    Ratnasingham S, Hebert PDN (2007) Bold: the Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364
  25. 25.
    Folmer O et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  26. 26.
    Roe AD, Sperling FAH (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I and II and implications for DNA barcoding. Mol Phylogenet Evol 44:325–345PubMedCrossRefGoogle Scholar
  27. 27.
    Collins FH, Paskewitz SM (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5:1–9PubMedCrossRefGoogle Scholar
  28. 28.
    White TJ et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  29. 29.
    Hancock JM, Tautz D, Dover GA (1988) Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol Biol Evol 5:393–414PubMedGoogle Scholar
  30. 30.
    Dietrich CH et al (2001) Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. Mol Phylogenet Evol 18:293–305PubMedCrossRefGoogle Scholar
  31. 31.
    Cryan JR et al (2000) Phylogeny of the treehoppers (Insecta: Hemiptera: Membracidae): evidence from two nuclear genes. Mol Phylogenet Evol 17:317–334PubMedCrossRefGoogle Scholar
  32. 32.
    Dean MD, Ballard JWO (2001) Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans. Entomol Exp Appl 98:279–283CrossRefGoogle Scholar
  33. 33.
    Starks PT, Peters JM (2002) Semi-nondestructive genetic sampling from live eusocial wasps, Polistes dominulus and Polistes fuscatus. Insectes Soc 49:20–22CrossRefGoogle Scholar
  34. 34.
    Rowley DL et al (2007) Vouchering DNA-barcoded specimens: test of a nondestructive extraction protocol for terrestrial arthropods. Mol Ecol Notes 7:915–924CrossRefGoogle Scholar
  35. 35.
    Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  36. 36.
    Wheeler TJ, Kececioglu JD (2007) Multiple alignment by aligning alignments. Bioinformatics 23:i559–i568PubMedCrossRefGoogle Scholar
  37. 37.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  38. 38.
    Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  39. 39.
    Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  40. 40.
    Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.DIVAPRA—Entomologia e Zoologia applicate all’Ambiente “Carlo Vidano”Università degli Studi di TorinoGrugliascoItaly

Personalised recommendations