Phytoplasma pp 73-85 | Cite as

Insect Vector Transmission Assays

Part of the Methods in Molecular Biology book series (MIMB, volume 938)


Phytoplasmas are transmitted in a persistent propagative manner by phloem-feeding vectors belonging to the order Hemiptera, suborder Homoptera. Following acquisition from the infected source plant, there is a latent period before the vector can transmit, so transmission assays consist of three basic steps: acquisition, latency, and inoculation. More than 90 vector species (plant-, leafhoppers, and psyllids) have been discovered so far but many others are still undiscovered, and their role in spreading economically important crop diseases is neglected. Therefore, screening for vectors is an essential step in developing rational control strategies targeted against the actual vectors for phytoplasma-associated diseases. The mere detection of a phytoplasma in an insect does not imply that the insect is a vector; a transmission assay is required to provide conclusive evidence. Transmission experiments can be carried out using insects from phytoplasma-free laboratory colonies or field-collections. Moreover, transmission assays can be performed by feeding vectors on an artificial diet through Parafilm®, after which phytoplasmas can be detected in the sucrose feeding medium by PCR. Transmission trials involve the use of different techniques according to the biology of the different vector species; planthoppers, leafhoppers, and psyllids.

Key words

Artificial feeding medium Feeding Hemiptera PCR Transmission Vector species 


  1. 1.
    Marcone C et al (1999) Dodder transmission of pear decline, European stone fruit yellows, Rubus stunt, Picris echioides yellows and cotton phyllody phytoplasmas to periwinkle. J Phytopathol 147:187–192Google Scholar
  2. 2.
    Ciccotti AM et al (2008) Natural and experimental transmission of ‘Candidatus Phytoplasma mali’ by root bridges. Acta Hortic 781:459–464Google Scholar
  3. 3.
    Nipah JO, Jones P, Dickinson MJ (2007) Detection of lethal yellowing phytoplasma in embryos from coconut palms infected with Cape St Paul wilt disease in Ghana. Plant Pathol 56:777–784CrossRefGoogle Scholar
  4. 4.
    Bosco D, D’Amelio R (2010) Transmission specificity and competition of multiple phytoplasmas in the insect vector. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford, UK, pp 293–308Google Scholar
  5. 5.
    Marzachì C, Milne RG, Bosco D (2004) Phytoplasma-plant-vector relationships. In: Pandalai SG (ed) Recent research developments in plant pathology, vol 3. Research Signpost Trivandrum, Kerala, India, pp 211–241Google Scholar
  6. 6.
    Weintraub PG, Beanland LA (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111PubMedCrossRefGoogle Scholar
  7. 7.
    Golino DA, Oldfield GN, Gumpf DJ (1987) Transmission characteristics of the beet leafhopper transmitted virescence agent. Phytopathology 77:954–957CrossRefGoogle Scholar
  8. 8.
    Carraro L et al (1996) Studies on the transmission of a phytoplasma from Chrysanthemum leucanthemum L. by the leafhopper Euscelidius variegatus Kbm. IOM Lett 4:127–128Google Scholar
  9. 9.
    Jarausch W, Lansac M, Dosba F (1996) Long-term maintenance of nonculturable apple-proliferation phytoplasmas in their micropropagated natural host plant. Plant Pathol 45:778–786CrossRefGoogle Scholar
  10. 10.
    Melamed S et al (2003) Identification and characterization of phytoplasmal genes, employing a novel method of isolating phytoplasmal genomic DNA. J Bacteriol 185:6513–6521PubMedCrossRefGoogle Scholar
  11. 11.
    Holzinger WE, Emelianov AF, Kammerlander I (2002) The family Cixiidae Spinola 1839 (Hemiptera: Fulgoromorpha)—a review. In: Holzinger WE (ed) Zikaden leafhoppers planthoppers and cicadas (Insecta: Hemiptera: Auchenorrhyncha), vol 4. Oberösterreichisches Landsmuseum, Linz, Austria, pp 113–138Google Scholar
  12. 12.
    Sforza R et al (1999) Field observations, laboratory rearing and descriptions of immatures of the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Eur J Entomol 96:409–418Google Scholar
  13. 13.
    Mazzoni V et al (2009) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185CrossRefGoogle Scholar
  14. 14.
    Zhang J et al (1998) A rapid method for detection and differentiation of aster-yellows phytoplasma-infected and inoculative leafhoppers. Phytopathology 88(suppl):S84Google Scholar
  15. 15.
    Tanne E et al (2001) Detection of phytoplasma by polymerase chain reaction of insect feeding medium and its use in determining vectoring ability. Phytopathology 91:741–746PubMedCrossRefGoogle Scholar
  16. 16.
    Ge Q, Maixner M (2003) Comparative experimental transmission of grapevine yellows phytoplasmas to plants and artificial feeding medium. 14th Meeting of the International Council for the Study of Virus and Virus-Like Diseases of the Grapevine (ICVG), Locorotondo, Italy, 12–17 Sept 2003, pp 109–110Google Scholar
  17. 17.
    Bressan A et al (2006) Insect injection and artificial feeding bioassays to test the vector specificity of Flavescence dorée phytoplasma. Phytopathology 96:790–796PubMedCrossRefGoogle Scholar
  18. 18.
    Pinzauti F, Trivellone V, Bagnoli B (2008) Ability of Reptalus quinquecostatus (Hemiptera: Cixiidae) to inoculate Stolbur phytoplasma to artificial feeding medium. Ann Appl Biol 153:299–305CrossRefGoogle Scholar
  19. 19.
    Swallow WH (1985) Group testing for estimating infection rates and probabilities of disease transmission. Phytopathology 75:882–889CrossRefGoogle Scholar
  20. 20.
    Hanboonsong Y et al (2002) Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Mol Biol 11:97–103PubMedCrossRefGoogle Scholar
  21. 21.
    Tedeschi R et al (2006) Possible phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathol 55:18–24CrossRefGoogle Scholar
  22. 22.
    Alma A et al (1997) Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball reared on healthy plants. Insect Mol Biol 6:115–121PubMedCrossRefGoogle Scholar
  23. 23.
    Kawakita H et al (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90:909–914PubMedCrossRefGoogle Scholar
  24. 24.
    Carle P, Moutous G (1965) Observation sur le mode de nutrition sur vigne de quatre espèces de cicadelles. Ann Epiphyt 16:333–354Google Scholar
  25. 25.
    Saracco P et al (2006) Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrysanthemum carinatum (Schousboe) following inoculation with its insect vector. Physiol Mol Plant Pathol 67:212–219CrossRefGoogle Scholar
  26. 26.
    Ammar ED (1976) A clip-on cage for holding leafhoppers and planthoppers on living plants. Anz Schadling Pflanzen Umweltsc 49:136–137CrossRefGoogle Scholar
  27. 27.
    Markham PG (1982) Insect vectors. In: Daniels MJ, Markham PG (eds) Plant and insect mycoplasma techniques. Halsted Press, Wiley, New York, pp 307–326CrossRefGoogle Scholar
  28. 28.
    Ranger CM et al (2004) Glandular trichome extracts from Medicago sativa deter settling by the potato leafhopper Empoasca fabae. J Chem Ecol 30:927–943PubMedCrossRefGoogle Scholar
  29. 29.
    Davidson EW et al (2000) Improved artificial feeding system for rearing the whitefly Bemisia argentifolii (Homoptera: Aleyrodidae). Fla Entomol 83:459–468CrossRefGoogle Scholar
  30. 30.
    Bosco D, Mason G, Accotto GP (2004) TYLCSV DNA, but not infectivity, can be transovarially inherited by the progeny of the whitefly vector Bemisia tabaci (Gennadius). Virology 323:276–283PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.DIVAPRA—Entomologia e Zoologia applicate all’Ambiente “Carlo Vidano”Università degli Studi di TorinoGrugliascoItaly

Personalised recommendations