Advertisement

Phytoplasma pp 189-204 | Cite as

Tuf and secY PCR Amplification and Genotyping of Phytoplasmas

  • Xavier Foissac
  • Jean-Luc Danet
  • Sylvie Malembic-Maher
  • Pascal Salar
  • Dana Šafářová
  • Pavla Válová
  • Milan NavrátilEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 938)

Abstract

Tuf and secY genotyping techniques have been developed to distinguish phytoplasma strains. Tuf polymerase chain reaction sequence analyses are available for phytoplasma taxonomic groups 16SrI, 16SrV, 16SrXII-A, and XII-B. In addition to their use to confirm the taxonomic status of phytoplasma strains, they allow the spread of phytoplasma strains in host plants and insect vectors to be traced. SecY is more variable than tuf and is therefore more discriminatory than tuf, but secY and tuf phylogenies show congruence.

Key words

Epidemiology Genetic diversity Polymerase chain reaction Phylogenetic analysis secY tuf 

References

  1. 1.
    The IRPCM Phytoplasma/Spiroplasma Working Team—Phytoplasma taxonomy group (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255CrossRefGoogle Scholar
  2. 2.
    Firrao G, Gibb K, Streten C (2005) Short taxonomic guide to the genus ‘Candidatus Phytoplasma’. J Plant Pathol 87:249–263Google Scholar
  3. 3.
    Hodgetts J et al (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol 58:1826–1837PubMedCrossRefGoogle Scholar
  4. 4.
    Langer M, Maixner M (2004) Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis 43:191–199Google Scholar
  5. 5.
    Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143:3381–3389PubMedCrossRefGoogle Scholar
  6. 6.
    Cimerman A et al (2009) Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Appl Environ Microbiol 75:2951–2957PubMedCrossRefGoogle Scholar
  7. 7.
    Fialová R et al (2009) Genetic variability of stolbur phytoplasma in annual crop and wild plant species in south Moravia (Czech Republic). J Plant Pathol 91:411–416Google Scholar
  8. 8.
    Murolo S et al (2010) Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. J Appl Microbiol 109:2049–2059PubMedCrossRefGoogle Scholar
  9. 9.
    Pacifico D et al (2009) Characterization of Bois noir isolates by restriction fragment length polymorphism of a Stolbur-specific putative membrane protein gene. Phytopathology 99: 711–715PubMedCrossRefGoogle Scholar
  10. 10.
    Berg M et al (1999) Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology 145:1937–1943PubMedCrossRefGoogle Scholar
  11. 11.
    Danet JL et al (2011) Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and the existence of inter-species recombination. Microbiology 157:438–450PubMedCrossRefGoogle Scholar
  12. 12.
    Danet JL et al (2007) Imp and secY, two new markers for MLST (multilocus sequence typing) in the 16SrX phytoplasma taxonomic group. Bull Insectol 60:339–340Google Scholar
  13. 13.
    Kakizawa S et al (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol Lett 293:92–101PubMedCrossRefGoogle Scholar
  14. 14.
    Kakizawa S, Oshima K, Namba S (2006) Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol 14:254–256PubMedCrossRefGoogle Scholar
  15. 15.
    Kakizawa S et al (2006) Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J Bacteriol 188: 3424–3428PubMedCrossRefGoogle Scholar
  16. 16.
    Fabre A, Danet JL, Foissac X (2011) The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene 472:37–41PubMedCrossRefGoogle Scholar
  17. 17.
    Schneider B, Seemüller E (2009) Strain differentiation of Candidatus Phytoplasma mali by SSCP- and sequence analyses of the hflB gene. J Plant Pathol 91:103–112Google Scholar
  18. 18.
    Seemüller E, Schneider B (2007) Differences in virulence and genomic features of strains of ‘Candidatus Phytoplasma mali’, the apple proliferation agent. Phytopathology 97:964–970PubMedCrossRefGoogle Scholar
  19. 19.
    Economou A (1999) Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol 7:315–320PubMedCrossRefGoogle Scholar
  20. 20.
    Angelini E et al (2003) Phylogenetic relationships among Flavescence doreé strains and related phytoplasmas determined by heteroduplex mobility assay and sequence of ribosomal and nonribosomal DNA. Plant Pathol 52: 663–672CrossRefGoogle Scholar
  21. 21.
    Arnaud G et al (2007) Multilocus sequence typing confirms the close genetic inter-relatedness of three distinct flavescence dorée phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol 73: 4001–4010PubMedCrossRefGoogle Scholar
  22. 22.
    Clair D et al (2003) A multiplex nested-PCR assay for sensitive and simultaneous detection and direct identification of phytoplasma in the Elm yellows group and Stolbur group and its use in survey of grapevine yellows in France. Vitis 42:151–157Google Scholar
  23. 23.
    Daire X et al (1992) Cloned DNA probes for detection of grapevine Flavescence doreé mycoplasma-like organism (MLO). Ann Appl Biol 121:95–103CrossRefGoogle Scholar
  24. 24.
    Daire X et al (1993) Diversity among mycoplasma-like organisms inducing grapevine yellows in France. Vitis 32:159–163Google Scholar
  25. 25.
    Daire X et al (1997) Survey for grapevine yellows phytoplasmas in diverse European countries and Israel. Vitis 36:53–54Google Scholar
  26. 26.
    Daire X et al (1993) Occurrence of diverse MLOs in tissues of grapevine affected by grapevine yellows in different countries. Vitis 32:247–248Google Scholar
  27. 27.
    Daire X et al (1997) Detection and differentiation of grapevine yellows phytoplasmas belonging to the elm yellows group and to the stolbur subgroup by PCR amplification of non-ribosomal DNA. Eur J Plant Pathol 103:507–514CrossRefGoogle Scholar
  28. 28.
    Lee IM et al (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60: 2887–2897PubMedCrossRefGoogle Scholar
  29. 29.
    Lee IM, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes 20:87–91PubMedCrossRefGoogle Scholar
  30. 30.
    Malembic-Maher S et al (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. Int J Syst Evol Microbiol 61:2129–2134PubMedCrossRefGoogle Scholar
  31. 31.
    Andersen MT et al (2006) Phylogenetic analysis of “Candidatus Phytoplasma australiense” reveals distinct populations in New Zealand. Phytopathology 96:838–845PubMedCrossRefGoogle Scholar
  32. 32.
    Lee IM et al (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54:1037–1048PubMedCrossRefGoogle Scholar
  33. 33.
    Ahrens U, Seemüller E (1992) Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82:828–832CrossRefGoogle Scholar
  34. 34.
    Maixner M, Ahrens U, Seemuller E (1995) Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur J Plant Pathol 101: 241–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Xavier Foissac
    • 1
  • Jean-Luc Danet
    • 1
  • Sylvie Malembic-Maher
    • 1
  • Pascal Salar
    • 1
  • Dana Šafářová
    • 2
  • Pavla Válová
    • 2
  • Milan Navrátil
    • 2
    Email author
  1. 1.UMR1332 Fruit Biology and PathologyINRA, University of BordeauxVillenave d’OrnonFrance
  2. 2.Department of Cell Biology and GeneticsPalacký UniversityOlomoucCzech Republic

Personalised recommendations