Skip to main content

Single-Cell Imaging Techniques for the Real-Time Detection of IP3 in Live Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 937))

Abstract

Inositol 1,4,5-trisphosphate (IP3) is a ubiquitous second messenger, derived from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by enzymes of the phospholipase C (PLC) family. Binding of IP3 to its cognate receptor in the endoplasmic reticulum membrane leads to release of Ca2+ into the cytoplasm, which is involved in the regulation of an array of cellular functions. Traditional techniques for the detection of IP3 have required the extraction of a large number of cells, with limitations in the time resolution of changes in IP3 and an inability to obtain detailed information on the dynamics of this second messenger in single cells. Recent progress in this field has led to the development of a number of genetically encoded fluorescent biosensors, which upon recombinant expression are able selectively to detect real-time changes in IP3 in single live cells. In this chapter, I detail protocols for the expression, visualization (by confocol or fluorescence microscopy), and interpretation of data obtained with such biosensors expressed in mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berridge MJ et al (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482

    PubMed  CAS  Google Scholar 

  2. Irvine RF et al (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J 229:505–511

    PubMed  CAS  Google Scholar 

  3. Kennedy ED et al (1989) A simple enzymic method to separate [3H]inositol 1,4,5- and 1,3,4-trisphosphate isomers in tissue extracts. Biochem J 260:283–286

    PubMed  CAS  Google Scholar 

  4. Shayman JA, Morrison AR, Lowry OH (1987) Enzymatic fluorometric assay for myo-inositol trisphosphate. Anal Biochem 162:562–568

    Article  PubMed  CAS  Google Scholar 

  5. Challiss RA, Batty IH, Nahorski SR (1988) Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun 157:684–691

    Article  PubMed  CAS  Google Scholar 

  6. Bredt DS, Mourey RJ, Snyder SH (1989) A simple, sensitive, and specific radioreceptor assay for inositol 1,4,5-trisphosphate in biological tissues. Biochem Biophys Res Commun 159:976–982

    Article  PubMed  CAS  Google Scholar 

  7. Batty IH et al (1997) Receptor-linked phosphoinositide metabolism. In: Turner AJ, Bachelard HS (eds) Neurochemistry: a practical approach, 2nd edn. Oxford University Press, Oxford, pp 229–268

    Google Scholar 

  8. Zhang L (1998) Inositol 1,4,5-trisphosphate mass assay. Methods Mol Biol 105:77–87

    PubMed  CAS  Google Scholar 

  9. Varnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  PubMed  CAS  Google Scholar 

  10. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  PubMed  CAS  Google Scholar 

  11. Nahorski SR et al (2003) Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci 26:444–452

    Article  PubMed  CAS  Google Scholar 

  12. Varnai P, Balla T (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim Biophys Acta 1761:957–967

    Article  PubMed  CAS  Google Scholar 

  13. Nelson CP, Nahorski SR, Challiss RAJ (2008) Temporal profiling of changes in phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase C-initiated signalling in single neurons. J Neurochem 107:602–615

    Article  PubMed  CAS  Google Scholar 

  14. Hirose K et al (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284:1527–1530

    Article  PubMed  CAS  Google Scholar 

  15. Micheva KD, Holz RW, Smith SJ (2001) Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J Cell Biol 154:355–368

    Article  PubMed  CAS  Google Scholar 

  16. Nash MS et al (2002) Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem 277:35947–35960

    Article  PubMed  CAS  Google Scholar 

  17. Miyawaki A (in press) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem [in press]

    Google Scholar 

  18. Tanimura A et al (2004) Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem 279:38095–38098

    Article  PubMed  CAS  Google Scholar 

  19. Sato M et al (2005) Locating inositol 1,4,5-trisphosphate in the nucleus and neuronal dendrites with genetically encoded fluorescent indicators. Anal Chem 77:4751–4758

    Article  PubMed  CAS  Google Scholar 

  20. Remus TP et al (2006) Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol Chem 281:608–616

    Article  PubMed  CAS  Google Scholar 

  21. Matsu-ura T et al (2006) Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol 173:755–765

    Article  PubMed  CAS  Google Scholar 

  22. Tanimura A et al (2009) Monitoring of IP3 dynamics during Ca2+ oscillations in HSY human parotid cell line with FRET-based IP3 biosensors. J Med Invest 56(Suppl):357–361

    Article  PubMed  Google Scholar 

  23. Shirakawa H et al (2006) Measurement of intracellular IP3 during Ca2+ oscillations in mouse eggs with GFP-based FRET probe. Biochem Biophys Res Commun 345:781–788

    Article  PubMed  CAS  Google Scholar 

  24. Lemmon MA et al (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92:10472–10476

    Article  PubMed  CAS  Google Scholar 

  25. Okubo Y et al (2001) Visualization of IP3 dynamics reveals a novel AMPA receptor-triggered IP3 production pathway mediated by voltage-dependent Ca2+ influx in Purkinje cells. Neuron 32:113–122

    Article  PubMed  CAS  Google Scholar 

  26. Nash MS et al (2004) Synaptic activity augments muscarinic acetylcholine receptor-stimulated inositol 1,4,5-trisphosphate production to facilitate Ca2+ release in hippocampal neurons. J Biol Chem 279:49036–49044

    Article  PubMed  CAS  Google Scholar 

  27. Xu C, Watras J, Loew LM (2003) Kinetic analysis of receptor-activated phosphoinositide turnover. J Cell Biol 161:779–791

    Article  PubMed  CAS  Google Scholar 

  28. van der Wal J et al (2001) Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem 276:15337–15344

    Article  PubMed  Google Scholar 

  29. Winks JS et al (2005) Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 25:3400–3413

    Article  PubMed  CAS  Google Scholar 

  30. Martin AK, Nahorski SR, Willars GB (1999) Complex relationship between Ins(1,4,5)P3 accumulation and Ca2+-signalling in a human neuroblastoma reveled by cellular differentiation. Br J Pharmacol 126:1559–1566

    Article  PubMed  CAS  Google Scholar 

  31. Llopis J et al (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808

    Article  PubMed  CAS  Google Scholar 

  32. Elsliger MA et al (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301

    Article  PubMed  CAS  Google Scholar 

  33. Nagai T et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  34. Nash MS et al (2001) Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J 356:137–142

    Article  PubMed  CAS  Google Scholar 

  35. Jensen JB et al (2009) Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. J Gen Physiol 133:347–359

    Article  PubMed  CAS  Google Scholar 

  36. Willoughby D, Cooper DM (2008) Live-cell imaging of cAMP dynamics. Nat Methods 5:29–36

    Article  PubMed  CAS  Google Scholar 

  37. Oancea E et al (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 140:485–498

    Article  PubMed  CAS  Google Scholar 

  38. Tobin AB, Lambert DG, Nahorski SR (1992) Rapid desensitization of muscarinic m3 receptor-stimulated polyphosphoinositide responses. Mol Pharmacol 42:1042–1048

    PubMed  CAS  Google Scholar 

  39. Willars GB, Nahorski SR, Challiss RA (1998) Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem 273:5037–5046

    Article  PubMed  CAS  Google Scholar 

  40. Murray JM (2006) Confocal microscopy, deconvolution and structured illumination methods. In: Spector DL, Goldman RD (eds) Basic methods in microscopy. Cold Spring Harbor Laboratory Press, pp 43–81

    Google Scholar 

  41. Nelson CP, Challiss RA (2011) The use of translocating fluorescent biosensors for real-time monitoring of GPCR-mediated signaling events. Methods Mol Biol 746:329–343

    Article  PubMed  CAS  Google Scholar 

  42. Nelson CP et al (2008) Visualizing the temporal effects of vasoconstrictors on PKC translocation and Ca2+ signaling in single resistance arterial smooth muscle cells. Am J Physiol Cell Physiol 295:C1590–C1601

    Article  PubMed  CAS  Google Scholar 

  43. Bartlett PJ et al (2005) Single cell analysis and temporal profiling of agonist-mediated inositol 1,4,5-trisphosphate, Ca2+, diacylglycerol, and protein kinase C signaling using fluorescent biosensors. J Biol Chem 280:21837–21846

    Article  PubMed  CAS  Google Scholar 

  44. Balla A et al (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIα. Mol Biol Cell 19:711–721

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Prof. Tobias Meyer (Stanford University, USA) for making the eGFP-PH biosensor available to us and Prof. Katsuhiko Mikoshiba (RIKEN, Japan) for providing us with the IRIS-1 biosensor. I also thank Prof. John Challiss (University of Leicester, UK) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl P. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nelson, C.P. (2013). Single-Cell Imaging Techniques for the Real-Time Detection of IP3 in Live Cells. In: Lambert, D., Rainbow, R. (eds) Calcium Signaling Protocols. Methods in Molecular Biology, vol 937. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-086-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-086-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-085-4

  • Online ISBN: 978-1-62703-086-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics