Skip to main content

Analysis of MicroRNA Length Variety Generated by Recombinant Human Dicer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

miRNAs are a large subgroup of noncoding regulatory RNAs, which vary in length within the 20–25 nt range and show substantial length diversity and heterogeneity. To analyze the latter phenomenon, we recently developed high-resolution northern blotting and employed this method to investigate cleavages generated by recombinant human Dicer in the synthetic miRNA precursors. We paid special care to visualize clearly the cleavages generated by the individual RNase III domains of Dicer. We have compared the results of northern blotting with the results of standard analysis with the use of end-labeled RNA and visualization of Dicer cleavage products by autoradiography. The point-by-point steps of substrate preparation, recombinant Dicer cleavage assay, and northern blotting are described in this manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Denli AM et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  2. Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280:27595–27603

    Article  PubMed  CAS  Google Scholar 

  3. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    Article  PubMed  CAS  Google Scholar 

  4. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  5. Bernstein E et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  6. Zhang H et al (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68

    Article  PubMed  CAS  Google Scholar 

  7. MacRae IJ et al (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311:195–198

    Article  PubMed  CAS  Google Scholar 

  8. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  9. Starega-Roslan J et al (2011) The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 68:2859–2871

    Article  PubMed  CAS  Google Scholar 

  10. Starega-Roslan J et al (2011) Structural basis of microRNA length variety. Nucleic Acids Res 39:257–268

    Article  PubMed  CAS  Google Scholar 

  11. Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  12. Morin RD et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  PubMed  CAS  Google Scholar 

  13. Seitz H et al (2008) Argonaute loading improves the 5′ precision of both MicroRNAs and their miRNA* strands in flies. Curr Biol 18:147–151

    Article  PubMed  CAS  Google Scholar 

  14. Warf MB et al (2011) Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA 17:563–577

    Article  PubMed  CAS  Google Scholar 

  15. Wu H et al (2009) Alternative processing of primary microRNA transcripts by Drosha ­generates 5′ end variation of mature microRNA. PLoS One 4:e7566

    Article  PubMed  Google Scholar 

  16. Ruby JG et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207

    Article  PubMed  CAS  Google Scholar 

  17. Tian G et al (2010) Sequencing bias: comparison of different protocols of microRNA library construction. BMC Biotechnol 10:64

    Article  PubMed  Google Scholar 

  18. Huse SM et al (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed  Google Scholar 

  19. Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66

    Article  PubMed  CAS  Google Scholar 

  20. Maniataki E et al (2005) Immunoprecipitation of microRNPs and directional cloning of microRNAs. Methods Mol Biol 309:283–294

    PubMed  CAS  Google Scholar 

  21. Leuschner PJ, Martinez J (2007) In vitro analysis of microRNA processing using recombinant Dicer and cytoplasmic extracts of HeLa cells. Methods 43:105–109

    Article  PubMed  CAS  Google Scholar 

  22. Obernosterer G et al (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167

    Article  PubMed  CAS  Google Scholar 

  23. Flores-Jasso CF et al (2009) First step in pre-miRNAs processing by human Dicer. Acta Pharmacol Sin 30:1177–1185

    Article  PubMed  CAS  Google Scholar 

  24. MacRae IJ et al (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105:512–517

    Article  PubMed  CAS  Google Scholar 

  25. Koscianska E et al (2011) High-resolution northern blot for a reliable analysis of microRNAs and their precursors. Scientific World J 11:102–117

    Article  Google Scholar 

Download references

Acknowledgement

We thank W. Filipowicz for kindly providing high-purity human Dicer preps. This work was supported by the European Regional Development Fund within the Innovative Economy Programme (POIG.01.03.01-30-098/08), the European Union under the European Social Fund (8.2.2 Human Capital Operational Programme to J.S.-R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wlodzimierz J. Krzyzosiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Starega-Roslan, J., Krzyzosiak, W.J. (2013). Analysis of MicroRNA Length Variety Generated by Recombinant Human Dicer. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics