Skip to main content

Evaluating the MicroRNA Targeting Sites by Luciferase Reporter Gene Assay

Part of the Methods in Molecular Biology book series (MIMB,volume 936)

Abstract

MicroRNAs are post-transcriptional regulators that control mRNA stability and the translation efficiency of their target genes. Mature microRNAs are approximately 22-nucleotide in length. They mediate post-transcriptional gene regulation by binding to the imperfect complementary sequences (a.k.a. microRNA regulatory elements, MRE) in the target mRNAs. It is estimated that more than one-third of the protein-coding genes in the human genome are regulated by microRNAs. The experimental methods to examine the interaction between the microRNA and its targeting site(s) in the mRNA are important for understanding microRNA functions. The luciferase reporter gene assay has recently been adapted to test the effect of microRNAs. In this chapter, we use a previously identified miR-138 targeting site in the 3′-untranslated region (3′-UTR) of the RhoC mRNA as an example to describe a quick method for testing the interaction of microRNA and mRNA.

Key words

  • MicroRNA
  • MicroRNA targeting sequence
  • MicroRNA regulatory element
  • Luciferase reporter gene assay
  • miR-138
  • RhoC

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-083-0_10
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-083-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bartel DP (2004) MicroRNAs: genomics, ­biogenesis, mechanism, and function. Cell 116: 281–297

    PubMed  CrossRef  CAS  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233

    PubMed  CrossRef  CAS  Google Scholar 

  3. Dai Y, Zhou X (2010) Computational methods for the identification of microRNA targets. Open Access Bioinform 2:29–39

    CAS  Google Scholar 

  4. Wang C, Li Q (2007) Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. J Genet Genomics 34:966–973

    PubMed  CrossRef  CAS  Google Scholar 

  5. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, Hubel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg ME, Draguhn A, Rehmsmeier M, Martinez J, Schratt GM (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–716

    PubMed  CrossRef  CAS  Google Scholar 

  6. Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 105:17830–17835

    PubMed  CrossRef  CAS  Google Scholar 

  7. Kisliouk T, Yosefi S, Meiri N (2011) MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur J Neurosci 33:224–235

    PubMed  CrossRef  Google Scholar 

  8. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, Kotani K, Oikawa H, Sakurai E, Izutsu N, Kato K, Komatsu H, Ikeda K, Wakabayashi G, Masuda T (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99:280–286

    PubMed  CrossRef  CAS  Google Scholar 

  9. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, Gemma A, Kudoh S, Croce CM, Harris CC (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 106:12085–12090

    PubMed  CrossRef  CAS  Google Scholar 

  10. Zhao X, Yang L, Hu J, Ruan J (2010) miR-138 might reverse multidrug resistance of leukemia cells. Leuk Res 34:1078–1082

    PubMed  CrossRef  CAS  Google Scholar 

  11. Jiang L, Dai Y, Liu X, Wang C, Wang A, Chen Z, Heidbreder CE, Kolokythas A, Zhou X (2011) Identification and experimental validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microRNA-138 target in tongue squamous cell carcinoma. Hum Genet 129:189–197

    PubMed  CrossRef  CAS  Google Scholar 

  12. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, Shi F, Zhou X (2010) Down-regulation of the Rho GTPase signaling ­pathway is involved in the microRNA-138 mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127:505–512

    PubMed  CrossRef  CAS  Google Scholar 

  13. Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W (2008) Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123:251–257

    PubMed  CrossRef  CAS  Google Scholar 

  14. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI (2008) Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14:2588–2592

    PubMed  CrossRef  CAS  Google Scholar 

  15. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105

    PubMed  CrossRef  CAS  Google Scholar 

  16. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X (2009) MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 286:217–222

    PubMed  CrossRef  CAS  Google Scholar 

  17. Kawasaki H, Taira K (2003) Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 423:838–842

    PubMed  CrossRef  CAS  Google Scholar 

  18. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010) miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5:e9429

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH PHS grants (CA135992, CA139596, DE014847) and supplementary funding from UIC CCTS (UL1RR029879). Y.J. is supported by PHS T32DE018381 from NIDCR. We thank Ms. Katherine Long for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jin, Y., Chen, Z., Liu, X., Zhou, X. (2013). Evaluating the MicroRNA Targeting Sites by Luciferase Reporter Gene Assay. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols