Skip to main content

The MicroRNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented in this chapter, hopefully providing a guideline for further miRNA and gene function studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Holley RW (1965) Structure of an alanine transfer ribonucleic acid. JAMA 194:868–871

    Article  PubMed  CAS  Google Scholar 

  2. Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 64:897–934

    Article  PubMed  CAS  Google Scholar 

  3. Tycowski KT, Shu MD, Steitz JA (1996) A mammalian gene with introns instead of exons generating stable RNA products. Nature 379:464–466

    Article  PubMed  CAS  Google Scholar 

  4. Filipowicz W (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci U S A 97:14035–14037

    Article  PubMed  CAS  Google Scholar 

  5. Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410

    Article  PubMed  CAS  Google Scholar 

  6. van Hoof A, Parker R (1999) The exosome: a proteasome for RNA? Cell 99:347–350

    Article  PubMed  Google Scholar 

  7. Frank DN, Roiha H, Guthrie C (1994) Architecture of the U5 small nuclear RNA. Mol Cell Biol 14:2180–2190

    PubMed  CAS  Google Scholar 

  8. Stavianopoulos JG, Karkus JD, Charguff E (1971) Nucleic acid polymerase of the developing chicken embryos: a DNA Polymerase preferring a hybrid template. Proc Natl Acad Sci U S A 68:2207–2211

    Article  Google Scholar 

  9. Stavianopoulos JG, Karkus JD, Charguff E (1972) Mechanism of DNA replication by highly purified DNA polymerase of chicken embryos. Proc Natl Acad Sci USA 69:2609–2613

    Article  Google Scholar 

  10. Wank H, Schroeder R (1996) Antibiotic-induced oligomerisation of group I intron RNA. J Mol Biol 258:53–61

    Article  PubMed  CAS  Google Scholar 

  11. van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  12. Napoli C, Lemieux C, Jorgensen RA (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  13. Matzke MA, Primig MJ, Trnovsky J, Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    PubMed  CAS  Google Scholar 

  14. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  15. Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19:9–12

    Article  PubMed  Google Scholar 

  16. Sui G, Soohoo C, el Affar B et al (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520

    Article  PubMed  CAS  Google Scholar 

  17. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  Google Scholar 

  18. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  PubMed  CAS  Google Scholar 

  19. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Article  PubMed  CAS  Google Scholar 

  20. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    Article  PubMed  CAS  Google Scholar 

  21. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  22. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  23. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  PubMed  CAS  Google Scholar 

  24. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  25. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2003) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  Google Scholar 

  26. Ying SY, Lin SL (2005) Intronic microRNAs (miRNAs). Biochem Biophys Res Commun 326:515–520

    Article  PubMed  CAS  Google Scholar 

  27. Lee YS, Nakahara K, Pham JW et al (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  PubMed  CAS  Google Scholar 

  28. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  PubMed  CAS  Google Scholar 

  29. Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  PubMed  CAS  Google Scholar 

  30. Coghlan A, Wolfe KH (2004) Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci U S A 101:11362–11367

    Article  PubMed  CAS  Google Scholar 

  31. Harper PS (1989) Myotonic dystrophy, 2nd edn. Saunders, London

    Google Scholar 

  32. Liquori CL, Ricker K, Moseley ML et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  PubMed  CAS  Google Scholar 

  33. Aravin AA, Sachidanadam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  PubMed  CAS  Google Scholar 

  34. Siomi MC, Miyoshi T, Siomi H (2010) piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 21:754–759

    Article  PubMed  CAS  Google Scholar 

  35. Betel D, Sheridan R, Marks DS, Sander C (2007) Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput Biol 3:2219–2227

    CAS  Google Scholar 

  36. Shpiz S, Kwon D, Rozovsky Y, Kalmykova A (2009) rasiRNA pathway controls antisense expression of Drosophila telomeric transposons in the nucleus. Nucleic Acids Res 37:267–278

    Article  Google Scholar 

  37. Pelisson A, Sarot E, Payen-Groschene G, Bucheton A (2007) A novel repeat-associated small interfering RNA -mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. J Virol 81:1951–1960

    Article  PubMed  CAS  Google Scholar 

  38. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1–7

    Article  Google Scholar 

  39. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  40. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103:17337–17342

    Article  PubMed  CAS  Google Scholar 

  41. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613

    Article  PubMed  CAS  Google Scholar 

  42. Lin SL, Chang D, Wu DY, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760

    Article  PubMed  CAS  Google Scholar 

  43. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  44. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  45. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  46. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  47. Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    PubMed  CAS  Google Scholar 

  48. Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14:857–867

    Article  PubMed  CAS  Google Scholar 

  49. Béclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12:684–688

    Article  PubMed  Google Scholar 

  50. Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    Article  PubMed  CAS  Google Scholar 

  51. Kidner CA, Martienssen RA (2005) The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 280:504–517

    Article  PubMed  CAS  Google Scholar 

  52. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  PubMed  CAS  Google Scholar 

  53. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  CAS  Google Scholar 

  54. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  55. Karube Y, Tanaka H, Osada H et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    Article  PubMed  CAS  Google Scholar 

  56. Xu P, Guo M, Hay BA (2004) MicroRNAs and the regulation of cell death. Trends Genet 20:617–624

    Article  PubMed  CAS  Google Scholar 

  57. Jin P, Alisch RS, Warren ST (2004) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6:1048–1053

    Article  PubMed  CAS  Google Scholar 

  58. Gesellchen V, Boutros M (2004) Managing the genome: microRNAs in Drosophila. Differentiation 72:74–80

    Article  PubMed  Google Scholar 

  59. McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253–258

    Article  PubMed  CAS  Google Scholar 

  60. Liu CG, Calin GA, Meloon B et al (2004) An oligonucleotide microchip for genomewide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744

    Article  PubMed  CAS  Google Scholar 

  61. Miska EA, Alvarez-Saavedra E, Townsend M et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  Google Scholar 

  62. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    Article  PubMed  Google Scholar 

  63. Giraldez AJ, Cinalli RM, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  PubMed  CAS  Google Scholar 

  64. Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Droso­phila microRNA genes. Genome Biol 4:R42

    Article  PubMed  Google Scholar 

  65. Brown JR, Sanseau P (2005) A computational view of microRNAs and their targets. Drug Discov Today 10:595–601

    Article  PubMed  CAS  Google Scholar 

  66. Miyagishi M, Matsumoto S, Taira K (2004) Generation of and shRNAi expression library against the whole human transcripts. Virus Res 102:117–124

    Article  PubMed  CAS  Google Scholar 

  67. Nagl SB (2002) Computational function assignment for potential drug targets: from single genes to cellular systems. Curr Drug Targets 3:387–399

    Article  PubMed  CAS  Google Scholar 

  68. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

    Article  PubMed  CAS  Google Scholar 

  69. Pardridge WM (2004) Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 4:1103–1113

    Article  PubMed  CAS  Google Scholar 

  70. Zamore PD (2004) Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr Biol 9:R198–R200

    Article  Google Scholar 

  71. Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–561

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Yao Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ying, SY., Chang, D.C., Lin, SL. (2013). The MicroRNA. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics