Skip to main content

Micropropagation of Citrus spp. by Organogenesis and Somatic Embryogenesis

  • Protocol
  • First Online:
Protocols for Micropropagation of Selected Economically-Important Horticultural Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 994))

Abstract

Citrus spp., the largest fruit crops produced worldwide, are usually asexually propagated by cuttings or grafting onto seedling rootstocks. Most of Citrus genotypes are characterized by polyembryony due to the occurrence of adventive nucellar embryos, which lead to the production of true-to-type plants by seed germination. Tissue culture and micropropagation, in particular, are valuable alternatives to traditional propagation to obtain a high number of uniform and healthy plants in a short time and in a small space. Moreover, in vitro propagation provides a rapid system to multiply the progeny obtained by breeding programs, allows the use of monoembryonic and seedless genotypes as rootstocks, and it is very useful also for breeding and germplasm preservation.

In this chapter, two protocols regarding organogenesis of a rootstock and somatic embryogenesis of a cultivar have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FAOSTAT: http://faostat.fao.org

  2. Barlass M, Skene KGM (1986) Citrus (Citrus species). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Trees I, vol 1. Springer, Berlin

    Google Scholar 

  3. Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiol 28:55–66

    Article  PubMed  CAS  Google Scholar 

  4. Bordòn Y, Guardiola JL, Garcia-Luis A (2000) Genotype affects the morphogenic response in vitro of epicotyl segments of Citrus rootstocks. Ann Bot 86:159–166

    Article  Google Scholar 

  5. Edris MH, Burger DW (1984) In vitro propagation of Troyer citrange from epicotyl segments. Sci Hortic 23:159–162

    Article  Google Scholar 

  6. Garcia-Luis A, Molina RV, Varona V, Castello S, Guardiola JL (2006) The influence of explant orientation and contact with the medium on the pathway of shoot regeneration in vitro in epicotyl cuttings of Troyer citrange. Plant Cell Tiss Org 85:137–144

    Article  Google Scholar 

  7. Ghorbel R, Navarro L, Duran-Vila N (1998) Morphogenesis and regeneration of whole plants of grapefruit (Citrus paradisi), sour orange (C. aurantium) and alemow (C. macrophylla). J Hortic Sci Biotech 73:323–327

    Google Scholar 

  8. Goh CJ, Sim GE, Morales CL, Loh CS (1995) Plantlet regeneration through different morphogenic pathways in pommelo tissue culture. Plant Cell Tiss Org 43:301–303

    Google Scholar 

  9. Grinblat U (1972) Differentiation of Citrus stem in vitro. J Am Soc Hort Sci 97:599–603

    Google Scholar 

  10. Maggon R, Singh BD (1995) Promotion of adventitious bud regeneration by ABA in combination with BAP in epicotyl and hypocotyl explants of sweet orange (Citrus sinensis L. Osbeck). Scientia Hortic 63:123–128

    Article  CAS  Google Scholar 

  11. Moreira-Dias JM, Molina RV, Bordon N, Guardiola JL, Garcia-Luis A (2000) Direct and indirect shoot organogenic pathways in epicotyl cuttings of Troyer citrange differ in hormone requirements and in their response to light. Ann Bot 85:103–110

    Article  CAS  Google Scholar 

  12. Perez-Molphe-Balch E, Ochoa-Alejo N (1997) In vitro plant regeneration of Mexican lime and mandarin by direct organogenesis. Hortscience 32:931–934

    CAS  Google Scholar 

  13. Sim GE, Goh CJ, Loh CS (1989) Micropropagation of Citrus mitis Blanc. Multiple bud formation from shoot and root explants in the presence of 6-benzylaminopurine. Plant Sci 59:203–210

    Article  CAS  Google Scholar 

  14. Van Le B, Thanh Ha N, Anh Hong LT, Van Tran Thanh K (1999) High frequency shoot regeneration from trifoliate orange (Poncirus trifoliata L. Raf.) using the thin cell later method. CR Acad Sci Paris Life Sci 322:1105–1111

    CAS  Google Scholar 

  15. Bhat SR, Chitralekha P, Chandel KPS (1992) Regeneration of plants from long term root culture of lime, Citrus aurantifolia (Christm) Swing. Plant Cell Tiss Org 29:19–25

    Article  Google Scholar 

  16. Gill M, Singh Z, Dhillon BS, Gosal SS (1994) Somatic embryogenesis and plantlet regeneration on calluses derived from seedling explants of Kinnow mandarin (Citrus nobilis Lour. x Citrus deliciosa Ten.). J Hort Sci 69(2):231–236

    Google Scholar 

  17. Carimi F, De Pasquale F (2003) Micropropagation of Citrus. In: Mohan Jain S, Katsuaki I (eds) Micropropagation of woody trees and fruits. Kluwer Academic, Dordrecht, pp 589–619

    Google Scholar 

  18. Germanà MA (2003) Somatic embryogenesis and plant regeneration from anther culture of Citrus aurantium and Citrus reticulata. Biologia Bratislava 58(4):843–850

    Google Scholar 

  19. Germanà MA (2005) Protocol of somatic embryogenesis from Citrus spp. anther culture. In: Jain SM, Gupta PK (eds) Protocols of somatic embryogenesis-woody plants. ISBN: 1-4020-2984-5. Dordrecht: Springer, Netherlands, pp. 191–207

    Google Scholar 

  20. Germanà MA, Wang YY, Barbagallo MG, Iannolino G, Crescimanno FG (1994) Recovery of haploid and diploid plantlets from anther culture of Citrus clementina Hort. ex Tan. and Citrus reticulata Blanco. J Hort Sci 69(3):473–480

    Google Scholar 

  21. Germanà MA, Macaluso L, Patricolo G, Chiancone B (2008) Morphogenic response in vitro of epicotyl segments of Citrus macrophylla. Plant Biosyst 142(3):661–664

    Article  Google Scholar 

  22. Germanà MA, Micheli M, Chiancone B, Macaluso L, Standardi A (2011) Organogenesis and encapsulation of in vitro-derived propagules of Carrizo citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf). Plant Cell Tiss Org Cult 106:299–307

    Article  Google Scholar 

  23. Bar-Joseph M, Marcus R, Lee RF (1989) The continuous challenge of citrus tristeza virus control. Annu Rev Phytopathol 27:291–316

    Article  Google Scholar 

  24. Bajaj YPS (ed) (1995) Somatic embryogenesis and its applications for crop improvement. In: Biotechnology in agriculture and forestry. Somatic embryogenesis and synthetic seed I, vol 30. Springer, Berlin, pp 105–125

    Google Scholar 

  25. Henry RJ (1998) Molecular and biochemical characterization of somaclonal variation. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 485–499

    Google Scholar 

  26. Germanà MA, Piccioni E, Standardi A (1999) Effects of encapsulation on Citrus reticulata Blanco somatic embryos conversion. Plant Cell Tiss Org 55:235–237

    Google Scholar 

  27. Germanà MA, Hafiz IA, Micheli M, Standardi A (2007) In vitro and ex vitro conversion of encapsulated somatic embryos of Citrus reticulata Blanco, cv. Mandarino Tardivo di Ciaculli Plant Cell Tiss Org 88:117–120

    Article  Google Scholar 

  28. Singh B, Sharma S, Rani G (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour x C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107

    Article  Google Scholar 

  29. Germanà MA, Lambardi M, Ozudogru EA (2011) Preliminary results on desiccation and PVS2-vitrification of carrizo citrange synthetic seeds as pre-treatments to cryopreservation. Acta Hortic 892:311–318

    Google Scholar 

  30. Malik SK, Chaudhury R (2006) The cryopreservation of embryonic axes of two wild and endangered Citrus species. Plant genetic resources: characterization and utilization 4:204–209

    Article  Google Scholar 

  31. Germanà MA (1997) Haploidy in Citrus. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 5. Academic, Dordrecht, 5:195–217

    Google Scholar 

  32. Germanà MA (2006) Doubled Haploid production in fruit crops. Plant Cell Tiss Org 86:131–146

    Article  Google Scholar 

  33. Germanà MA (2009) Haploid and doubled haploids in fruit trees. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp. 241–263

    Google Scholar 

  34. Hidaka T, Yamada Y, Shichijo T (1981) Plantlet formation from anthers of Citrus aurantium L. Proc Int Soc Citriculture 1:153–155

    Google Scholar 

  35. Chaturvedi HC, Sharma AK (1985) Androgenesis in Citrus aurantifolia (Christm.) Swingle. Planta 165:142–144

    Article  Google Scholar 

  36. Ling J, Iwamasa M, Nito N (1988) Plantlet regeneration by anther culture of Calamondin (C. madurensis Lour.). Proc Sixth Intl Soc Citricult 1:251–256

    Google Scholar 

  37. Deng XX, Deng ZA, Xiao SY, Zhang WC (1992) Pollen derived plantlets from anther culture of Ichang papeda hybrids No.14 and Trifoliate orange. Proc Intl Soc Citricult 1:190–192

    Google Scholar 

  38. Germanà MA, Chiancone B, Lain O, Testolin R (2005) Anther culture in Citrus c1ementina: a way to regenerate tri-haploids. Austr J Agric Res 56:839–845

    Article  Google Scholar 

  39. Lillie RD (1951) Simplification of the manufacture of Schiff reagent for use in histochemical procedures. Stain Tech 26:163–165

    CAS  Google Scholar 

  40. Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. American J Bot 65:869–881

    Article  Google Scholar 

  41. Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706

    Article  CAS  Google Scholar 

  42. Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  43. Al-Bahrany AM (2002) Effect of phytohormones on in vitro shoot multiplication and rooting of lime Citrus aurantifolia (Christm.) Swing. Sci Hortic 95:285–295

    Article  CAS  Google Scholar 

  44. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta Germanà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chiancone, B., Germanà, M.A. (2012). Micropropagation of Citrus spp. by Organogenesis and Somatic Embryogenesis. In: Lambardi, M., Ozudogru, E., Jain, S. (eds) Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Methods in Molecular Biology, vol 994. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-074-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-074-8_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-073-1

  • Online ISBN: 978-1-62703-074-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics