Encapsulation of In Vitro-Derived Explants: An Innovative Tool for Nurseries



The encapsulation technology consists of the inclusion of some millimeter-long plant portions in a nutritive and protective matrix. This technology represents a further and promising tool for exchange of plant material between private and public plant tissue culture laboratories, for short- and medium-term storage of valuable plant material and for use of in vitro-derived or micropropagated propagules directly in farm or in nurseries. After encapsulation, transport, storage and sowing in aseptic conditions, the enclosed explants (capsules) may evolve in shoots (regrowth) and be employed for subsequent micropropagation or culture in vitro. When the encapsulated explant evolves in plantlet (conversion) in in vitro or in vivo conditions, the product of the encapsulation is defined as synthetic seed or artificial seed or synseed. The different evolution of the encapsulated plant material depends on tissue or plant material, genotype, nutritive and culture conditions, and treatments before or after encapsulation. In order to make economical the application of the encapsulation technology in the commercial nursery, research is looking for efficient automation or mechanization of the procedure and for preparation of the encapsulable explants.

Key words

Alginate bead Capsule Micropropagation Synthetic seed 


  1. 1.
    Hartmann HT, Kester DE, Davies FT, Geneve R (2002) How plant propagation evolved in human society. In: Pearsons Education Inc. (ed) Hartmann and Kester’s Plant propagation: principles and practices. Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar
  2. 2.
    Falcinelli M, Piccioni E, Standardi A (1993) Il seme sintetico nelle piante agrarie: problemi e prospettive. Sementi Elette 2:3–13Google Scholar
  3. 3.
    Micheli M, Gardi T, Standardi A (2003) La tecnologia dell’incapsulamento per la diffusione e/o la conservazione di materiale vivaistico. Italus Hortus 10(4):259–262Google Scholar
  4. 4.
    Murashige T (1978) The impact of tissue culture in agriculture. In: Thorpe A (ed) Frontiers of plant tissue culture. International Association for Plant Tissue Culture, CalgaryGoogle Scholar
  5. 5.
    Kozai T, Ting KC, Aitken-Christie J (1991) Considerations for automation of micropropagation systems. Trans ASAE 35:503–517Google Scholar
  6. 6.
    Donnelly DJ, Vidaver WE (1988) Somaclonal variation. In: Dudley TR (ed) Advances in plant science series, vol 3, Glossary of plant tissue culture. Dioscorides Press, Portland, OregonGoogle Scholar
  7. 7.
    Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (mulberry) by encapsulated shoot buds. Plant Cell Rep 6:393–395CrossRefGoogle Scholar
  8. 8.
    Redenbaugh K (1993) Introduction. In: Redenbaugh K (ed) Synseeds: applications of synthetic seeds to crop improvement. CRC Press Inc, Boca Raton, CaliforniaGoogle Scholar
  9. 9.
    Capuano G, Piccioni E, Standardi A (1998) Effect of different treatments on the conversion of M.26 apple rootstock synthetic seeds obtained from encapsulated apical and axillary micropropagated buds. J Hortic Sci Biotechnol 73:299–305Google Scholar
  10. 10.
    Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444Google Scholar
  11. 11.
    Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants: a review. Biotechnol Adv 27:671–679PubMedCrossRefGoogle Scholar
  12. 12.
    Pattnaik SK, Sahoo Y, Chand PK (1995) Efficient plant retrieval from alginate-encapsulated vegetative buds of mature mulberry trees. Sci Hortic 61:227–239CrossRefGoogle Scholar
  13. 13.
    Micheli M, Gardi T, Meoni M, Prosperi F, Scerna G, Sisani G (2007) Nuove tecniche di coltura in vitro per la salvaguardia delle risorse vegetali autoctone. In: Proceedings 102nd meeting bot soc, Palermo, 26–29 Sept, p. 234Google Scholar
  14. 14.
    Standardi A (2009) Una nuova tecnologia vivaistica in vitro. I Georgofili: Atti della Accademia dei Georgofili, Serie VIII, vol 4(2):685–704Google Scholar
  15. 15.
    Redenbaugh K, Fujii JAA, Slade D (1993) Hydrated coatings for synthetic seeds. In: Redenbaugh K (ed) Synseeds: applications of synthetic seeds to crop improvement. CRC Press Inc, Boca Raton, CaliforniaGoogle Scholar
  16. 16.
    Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 6(5):39–47CrossRefGoogle Scholar
  17. 17.
    Redenbaugh K, Walker K (1990) Role of artificial seeds in alfalfa breeding. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Development in crop science. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Barbotin JN, Nava Saucedo JE, Bazinet C, Kersulec A, Thomasset B, Thomas D (1993) Immobilization of whole cells and somatic embryos: coating process and cell-matrix interaction. In: Redenbaugh K (ed) Synseeds: applications of synthetic seeds to crop improvement. CRC Press Inc, Boca Raton, CaliforniaGoogle Scholar
  19. 19.
    Carlson WC, Hartle JE (1995) Manufactured seeds of woody plants. In: Jain SM, Gupta RK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 1, History, molecular and biochemical aspects and applications. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. 20.
    Gardi T, Piccioni E, Standardi A (1999) Effect of bead nutrient composition on regrowth ability of stored vitro-derived encapsulated microcuttings of different woody species. J Microencapsul 16(1):13–25PubMedCrossRefGoogle Scholar
  21. 21.
    Redembaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seed encapsulation of asexual plant embryos. BioTechnol 4(9):797–801CrossRefGoogle Scholar
  22. 22.
    Gray DJ, Compton ME, Harrell RC, Cantliffe DJ (1995) Somatic embryogenesis and the technology of synthetic seed. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30, Somatic embryogenesis and synthetic seed I. Springer, Berlin HeidelbergGoogle Scholar
  23. 23.
    Cartes PR, Castellanos HB, Rios DL, Saez KC, Spierccolli SH, Sanchez MO (2009) Encapsulated somatic embryos and zygotic embryos for obtaining artificial seed of Rauli-beech (Nothofagus alpina (Poepp. & Endl.) Oerst.). Chil J Agric Res 69(1):112–118Google Scholar
  24. 24.
    Suehara KI, Kohketsu K, Uozumi N, Kobayashi T (1995) Efficient production of Celery embryos and plantlets released in culture of immobilized gel beads. J Ferment Bioeng 79(6):585–588CrossRefGoogle Scholar
  25. 25.
    Germanà AM, Piccioni E, Standardi A (1999) Effect of encapsulation on Citrus reticulata Blanco, somatic embryo conversion. Plant Cell Tissue Organ Cult 55:235–237Google Scholar
  26. 26.
    Germanà AM, Hafiz AI, Micheli M, Standardi A (2007) Preliminary research on conversion of encapsulated somatic embryos of Citrus reticulata Blanco, cv. Mandarino Tardivo di Ciaculli. Plant Cell Tissue Organ Cult 88:117–120CrossRefGoogle Scholar
  27. 27.
    Singh B, Sharma S, Rani G, Virk GS, Zaidi AA, Nagpal A (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour x C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107CrossRefGoogle Scholar
  28. 28.
    Cangahuala-Inocente GC, Dal Vesco LL, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Hortic 111:228–234CrossRefGoogle Scholar
  29. 29.
    Akhtar N (1997) Studies on induction of somatic embryogenesis and production of artificial seeds for micropropagation of a tropical fruit tree guava (Psidium guajava L.). Ph.D. Banaras Hindu University, Varanasi, IndiaGoogle Scholar
  30. 30.
    Rai MK, Jaiswal VS (2008) Synthetic seeds of guava (Psidium guajava L) from somatic embryos and plant regeneration. In: Arya ID, Arya S (eds) Utilization of biotechnology in plant sciences. Forest Research Institute, Dehradun, IndiaGoogle Scholar
  31. 31.
    Rai MK, Jaiswal VS, Jaiswal U (2008) Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sci Hortic 117(3):302–305CrossRefGoogle Scholar
  32. 32.
    Das DK, Nirala NK, Reddy MK, Sopory SK, Upadhyaya KC (2006) Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage and propagation of pathogenfree plant material. Vitis 45:179–184Google Scholar
  33. 33.
    Ara H, Jaiswal U, Jaiswal VS (1999) Germination and plantlet regeneration from encapsulated somatic embryo of mango (Mangifera indica L.). Plant Cell Rep 19:166–170CrossRefGoogle Scholar
  34. 34.
    Wu YJ, Hunag XL, Xiao JN, Li XJ, Zhou MD, Engelmann F (2003) Cryopreservation of mango (Mangifera indica L.) embryogenic cultures. Cryo-Lett 24(5):303–314Google Scholar
  35. 35.
    Castillo B, Smith MAL, Yadav UL (1998) Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep 17:172–176CrossRefGoogle Scholar
  36. 36.
    Aquea F, Poupin MJ, Matus JT, Gebauer M, Medina C, Arce-Johnson P (2008) Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett 30:1847–1852PubMedCrossRefGoogle Scholar
  37. 37.
    Onay A, Jeffree CE, Yeoman MM (1996) Plant regeneration from encapsulated embryoids and an embryogenic mass of pistachio, Pistachio vera L. Plant Cell Rep 15:723–726CrossRefGoogle Scholar
  38. 38.
    Pintos B, Bueno MA, Quenca B, Manzanera JA (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tissue Organ Cult 95:217–225CrossRefGoogle Scholar
  39. 39.
    Bapat VA, Rao PS (1988) Sandalwood plantlets from synthetic seeds. Plant Cell Rep 7:434–436CrossRefGoogle Scholar
  40. 40.
    Utomo HS, Wenefrida I, Meche MM, Nash GL (2008) Synthetic seed as a potential direct delivery system of mass produced somatic embryos in the coastal marsh plant smooth cordgrass (Spartina alterniflora). Plant Cell Tissue Organ Cult 92:281–291CrossRefGoogle Scholar
  41. 41.
    Kim YH, Janick J (1990) Synthetic seed technology: improving dessication tolerance of somatic embryos of celery. Acta Hortic 280:23–28Google Scholar
  42. 42.
    Piccioni E, Gasbarro E, Standardi A (1992) Indagine preliminare sull’incapsulamento di propaguli di Lilium e di M.27 ‘vitro-derivati’. Annali Facoltà Agraria. Università di Perugia 46:359–371Google Scholar
  43. 43.
    Nakashimada Y, Uozumi N, Kobayashi T (1995) Production of plantlets for use as artificial seeds from horseradish hairy roots fragmented in a blender. J Ferment Bioeng 79(5):458–464CrossRefGoogle Scholar
  44. 44.
    Divakaran M, Nirmal Babu K, Peter KV (2006) Conservation of Vanilla species, in vitro. Sci Hortic 110:175–180CrossRefGoogle Scholar
  45. 45.
    Jackson JA, Dale PJ (1989) Somaclonal variation in Lolium multiflorum L. and L. temulentum L. Plant Cell Rep 8:161–164CrossRefGoogle Scholar
  46. 46.
    Vyas S, Guha S, Kapoor P, Rao IU (2010) Micropropagation of Cymbidium sleeping nymph through protocorm-like bodies production by thin cell layer culture. Sci Hortic 123:551–557CrossRefGoogle Scholar
  47. 47.
    Ganapathi TR, Suprasanna P, Bapat VA, Rao PS (1992) Propagation of banana through encapsulated shoot tips. Plant Cell Rep 11:571–575CrossRefGoogle Scholar
  48. 48.
    Hassanein AM, Ibrahiem IA, Galal AA, Salem JMM (2005) Micro-propagation factors essential for mass production of synthetic seeds in Banana. J Plant Biotechnol 7(3):175–181Google Scholar
  49. 49.
    Sandoval-Yugar EW, Dal Vasco LL, Steinmacher DA, Stolf EC, Guerra MP (2009) Microshoots encapsulation and plant conversion of Musa sp. cv. ‘Grand Naine’. Ciencia Rural 39(4):998–1004CrossRefGoogle Scholar
  50. 50.
    Lata H, Chandra S, Khan IA, ElSohly MA (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. an important medicinal plant. Physiol Mol Biol Plants 15(1):79–86CrossRefGoogle Scholar
  51. 51.
    Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb., a timber-yielding leguminous tree species. J Plant Physiol 161:237–243PubMedCrossRefGoogle Scholar
  52. 52.
    Rout GR, Das G, Samantary S, Das P (2001) Micropropagation of Plumbago zeylanica L., by encapsulated nodal explants. J Hortic Sci Biotechnol 76:24–29Google Scholar
  53. 53.
    Bapat VA (1993) Studies on synthetic seeds of sandalwood (Santalum album L.) and mulberry (Morus indica L.). In: Redenbaugh K (ed) Synseeds: applications of synthetic seeds to crop improvement. CRC Press Inc, Boca Raton, CaliforniaGoogle Scholar
  54. 54.
    Verma SK, Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) In vitro plantlets from alginate-encapsulated shoot tips of Solanum nigrum L. Sci Hortic 124:517–521CrossRefGoogle Scholar
  55. 55.
    Mathur J, Ahuja PS, Lal N, Mathur AK (1989) Propagation of Valeriana wallichii DC. Using encapsulated apical and axial shoot buds. Plant Sci 60:111–116CrossRefGoogle Scholar
  56. 56.
    Preece JE, West TP (2009) Microshoot encapsulation for cold storage, acclimatization, and clean up from arthropod infestations. Acta Hortic 812:83–90Google Scholar
  57. 57.
    Dave A, Joshi N, Purohit SD (2004) In vitro propagation of chlorophytum Borivilianum using encapsulated shoot buds. Eur J Hortic Sci 69(1):37–42Google Scholar
  58. 58.
    Hasan SMZ, Takagi H (1995) Alginate-coated nodal segments of yam (Dioscorea spp.) for germplasm exchange and distribution. Plant Gen Res Newslett 103:32–35Google Scholar
  59. 59.
    Micheli M, Hafiz IA, Bazzurri N, Standardi A (2006) Methodological development for synthetic seeds production of “Moraiolo”. In: Proceedings 2nd international seminar on “biotechnology and quality of olive tree products around the Mediterranean basin”, vol 1. Marsala, Mazara del Vallo, 5–10 Nov, pp. 155–158Google Scholar
  60. 60.
    Singh AK, Sharma M, Varshney R, Agarwal SS, Bansal KC (2006) Plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cell Dev-Pl 42:109–113CrossRefGoogle Scholar
  61. 61.
    Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252CrossRefGoogle Scholar
  62. 62.
    Singh SK, Rai MK, Asthana P, Pandey S, Jaiswal VS, Jaiswal U (2009) Plant regeneration from alginate-encapsulated shoot tips of Spilanthes acmella (L.) Murr., a medicinally important and herbal pesticidal plant species. Acta Physiol Plant 31:649–653CrossRefGoogle Scholar
  63. 63.
    Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. f.) Merrill, an endangered medicinal plant. J Hort Sci Biotechnol 82(3): 351–354Google Scholar
  64. 64.
    Singh AK, Varshney R, Sharma M, Agarwal SS, Bansal KC (2006) Regeneration of plants from alginate-encapsulated shoot tips of Withania somnifera (L.) Dunal, a medicinally important plant species. J Plant Physiol 163:220–223PubMedCrossRefGoogle Scholar
  65. 65.
    Piccioni E, Standardi A (1995) Encapsulation of micropropagated buds of six woody species. Plant Cell Tissue Organ Cult 42:221–226CrossRefGoogle Scholar
  66. 66.
    Sarkar D, Naik PS (1998) Synseeds in potato: an investigation using nutrient-encapsulated in vitro nodal cutting segments. Sci Hortic 73:179–84CrossRefGoogle Scholar
  67. 67.
    Standardi A, Piccioni E (1997) Rooting induction in encapsulated buds of M.26 apple rootstock for synthetic seed. In: Altman A, Waisel Y (eds) Biology of root formation and development. Plenum Publishing Company, New YorkGoogle Scholar
  68. 68.
    Adriani M, Piccioni E, Standardi A (2000) Effects of different treatments on the conversion of “Hayward” kiwifruit synthetic seeds to whole plants following encapsulation of vitro-derived buds. New J Crops Hortic Sci 29:59–67CrossRefGoogle Scholar
  69. 69.
    Lucaccioni L, Micheli M, Standardi A (2005). Incapsulamento di microtalee proliferate in vitro di GF677 per l’allestimento di semi sintetici.In: Atti del V Convegno Nazionale sulla Peschicoltura Mediterranea, Locorotondo (BA), 29–30 Settembre, pp. 139–146Google Scholar
  70. 70.
    Mandal J, Pattnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (hoary basil), O. basilicum L. (sweet basil), O. gratissimum L. (shrubby basil), and O. sanctum (sacred basil). In Vitro Cell Dev-Pl 36:287–292CrossRefGoogle Scholar
  71. 71.
    Pattnaik SK, Chand PK (2000) Morphogenic response of the alginate-encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tissue Organ Cult 60: 177–185CrossRefGoogle Scholar
  72. 72.
    Rai MK, Jaiswal VS, Jaiswal U (2008) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118:33–38CrossRefGoogle Scholar
  73. 73.
    Rai MK, Jaiswal VS, Jaiswal U (2008) Alginate-encapsulation of nodal segments of guava (Psidium guajava L.) for germplasm exchange and distribution. J Hortic Sci Biotechnol 83:569–573Google Scholar
  74. 74.
    Nagesh KS, Shanthamma C, Bhagyalakshmi N (2009) Role of polarity in de novo shoot bud initiation from stem disc explants of Curculigo orchioides Gaertn. And its encapsulation and storability. Acta Physiol Plant 31:699–704CrossRefGoogle Scholar
  75. 75.
    Menghini A, Micheli M, Standardi A (1999) Indagine preliminare sull’incapsulamento di gemme di olivo (Olea europaea L) vitro-derivate. Italus Hortus 6(6):3–9Google Scholar
  76. 76.
    Micheli M, Standardi A, Stanica F (2008) The technology of in vitro encapsulation for propagation, exchange and storage of plant genotypes. In: Proceedings international scientific symposium on “modern agriculture achievements and perspectives” Chisinau, Moldova, 21–23 OctGoogle Scholar
  77. 77.
    Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo). II. Effects of storage on capsule and derived shoots performance. Sci Hortic 113:286–292CrossRefGoogle Scholar
  78. 78.
    Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newbury JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CAB International, Wallingford, UKGoogle Scholar
  79. 79.
    Lambardi M, De Carlo A (2009) Tecniche ed applicazioni della criogenia alla conservazione ed al risanamento di germoplasma vegetale. Italus Hortus 16(1):79–97Google Scholar
  80. 80.
    Lambardi M, Benelli C, Caboni E, Engelmann F (2009) Potenzialità dei semi sintetici per la crioconservazione di specie vegetali. In: Proceedings Giornata di Studio sulla Tecnologia dell’incapsulamento, Perugia 9 novembreGoogle Scholar
  81. 81.
    Englemann F (2003) Cryopreservation techniques. In: Chaudhury R, Pandey R, Malik SK, Bhag M (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New DelhiGoogle Scholar
  82. 82.
    Paulet F, Engelmann F, Glaszmann J (1993) Cryopreservation of apices of in vitro plantlets of sugar cane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep 12:525–529CrossRefGoogle Scholar
  83. 83.
    Burrit DJ (2008) Efficient cryopreservation of adventitious shoots of Begonia x erythrophylla using encapsulation-dehydration requires pretreatment with both ABA and proline. Plant Cell Tissue Organ Cult 95(2):209–215CrossRefGoogle Scholar
  84. 84.
    Kami D, Shi L, Sato T, Suzuki T, Oosawa K (2009) Cryopreservation of shoot apices of hawthorn in vitro cultures originating from East Asia. Sci Hortic 120:84–88CrossRefGoogle Scholar
  85. 85.
    Lambardi M, Benelli C, Ozudogru AE, Ozden-Tokatli Y (2006) Synthetic seed technology in ornamental plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol 2. Global Science Books, UKGoogle Scholar
  86. 86.
    Hirai D, Shirai K, Shirai S, Sakai A (1998) Cryopreservation of in vitro-grown meristems of strawberry (Fragaria  ×  ananassa Duch.) by encapsulation–vitrification. Euphytica 101:109–115CrossRefGoogle Scholar
  87. 87.
    Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation–vitrification method. Cryo-Lett 25:51–58Google Scholar
  88. 88.
    Standardi A, Piccioni E (1998) Recent perspectives on the synthetic seed technology using non-embryogenic vitro-derived explants. Int J Plant Sci 159(6):968–978Google Scholar
  89. 89.
    Famiani F, Ferradini N, Staffolani P, Standardi A (1994) Effect of leaf excision time and age, BA concentration and dark treatment on in vitro shoot regeneration of M.26 apple rootstock. J Hortic Sci 9(4):679–685Google Scholar
  90. 90.
    Chu I (1995) Economic analysis of automated micropropagation. In: Aitken-Christie J, Kozai T, Smith M (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, DordrechtGoogle Scholar
  91. 91.
    Kurata K (1995) Automated systems for organogenesis. In: Aitken-Christie J, Kozai T, Smith M (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, DordrechtGoogle Scholar
  92. 92.
    Brischia R, Piccioni E, Standardi A (2001) Micropropagation and synthetic seed in M.26 apple rootstock (II): a new protocol for production of encapsulated differentiating propagules. Plant Cell Tissue Organ Cult 68:137–141CrossRefGoogle Scholar
  93. 93.
    Sicurani M, Piccioni E, Standardi A (2001) Micropropagation and preparation of synthetic seed in M.26 apple rootstock I: attempts towards saving labor in the production of adventitious shoot tips suitable for encapsulation. Plant Cell Tissue Organ Cult 66: 207–216CrossRefGoogle Scholar
  94. 94.
    Piccioni E (1997) Plantlets from encapsulated micropropagated buds of M.26 apple rootstock. Plant Cell Tissue Organ Cult 47:255–60CrossRefGoogle Scholar
  95. 95.
    Suzuki A, Kihara K, Ishizaki K (1987) Method and apparatus for gel capsule production. Japanase Patent Laid Open #S62-266,137Google Scholar
  96. 96.
    Suzuki A, Sakamoto Y (1990) Process and apparatus for producing beads. US Patent #4,933,122Google Scholar
  97. 97.
    Sakamoto Y, Onishi N, Hiroshima T (1995) Delivery system for tissue culture by encapsulation. In: Aitken-Christie J, Kozai T, Smith M (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  98. 98.
    Mallón R, Barros P, Luzardo A, Gonzalez ML (2007) Encapsulation of moss buds: an efficient method for the in vitro conservation and regeneration of the endangered moss Splachnum ampullaceum. Plant Cell Tissue Organ Cult 88:41–49CrossRefGoogle Scholar
  99. 99.
    Jaizme-Vega MC, Rodríguez-Romero AS, Marín Hermoso C, Declerck S (2003) Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca-alginate bead. Plant Soil 254(2):329–335CrossRefGoogle Scholar
  100. 100.
    Vassilev N, Vassileva M, Azcon R, Medina A (2001) Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil-plant system. J Biotechnol 4(2–3):237–242CrossRefGoogle Scholar
  101. 101.
    Mirabelli C, Tullio M, Pierandrei F, Reaa E (2009) Effect of Arbuscular Mycorrhizal fungi on micropropagated hazelnut (Corylus avellana L.) plants. Acta Hortic 812:467–472Google Scholar
  102. 102.
    Micheli M, Pellegrino S, Piccioni E, Standardi A (2002) Effects of double encapsulation and coating on synthetic seed conversion in M26 apple rootstock. J Microencapsul 19(3): 347–356PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Agricultural and Environmental SciencesUniversity of PerugiaPerugiaItaly

Personalised recommendations