Micropropagation of African Violet (Saintpaulia ionantha Wendl.)

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 994)

Abstract

Micropropagation is an important tool for rapid multiplication and the creation of genetic variability in African violets (Saintpaulia ionantha Wendl.). Successful in vitro propagation depends on the specific requirements and precise manipulation of various factors such as the type of explants used, physiological state of the mother plant, plant growth regulators in the culture medium, and growth conditions. Development of cost-effective protocols with a high rate of multiplication is a crucial requirement for commercial application of micropropagation. The current chapter describes an optimized protocol for micropropagation of African violets using leaf explants obtained from in vitro grown plants. In this process, plant regeneration occurs via both somatic embryogenesis and shoot organogenesis simultaneously in the explants induced with the growth regulator thidiazuron (TDZ; N-phenyl-N′-1,2,3-thidiazol-5-ylurea). The protocol is simple, rapid, and efficient for large-scale propagation of African violet and the dual routes of regeneration allow for multiple applications of the technology from simple clonal propagation to induction or selection of variants to the production of synthetic seeds.

Key words

African violet Saintpaulia ionantha Micropropagation Somatic embryogenesis Organogenesis Regeneration Root initiation Thidiazuron 

References

  1. 1.
    Al-Hussein S, Shibli RA, Karam NS (2006) Regeneration in African violet (Saintpaulia ionantha Wendl.) using different leaf explants, cytokinins sources, and light regimes. Jordan J Agric Sci 2:361–371Google Scholar
  2. 2.
    Bilkey PC, Cocking EC (1981) Increased plant vigor by in vitro propagation of Saintpaulia ionantha Wendl. from sub-epidermal tissue. HortScience 16:643–644Google Scholar
  3. 3.
    Harney PM, Knop A (1979) A technique for the in vitro propagation of African violets using petioles. Can J Plant Sci 59:263–266CrossRefGoogle Scholar
  4. 4.
    Lo KH (1997) Factors affecting shoot organogenesis in leaf disc cultures of African violets. Sci Hortic 72:49–57CrossRefGoogle Scholar
  5. 5.
    Start ND, Cumming BG (1976) In vitro propagation of Saintpaulia ionantha Wendl. HortScience 11:204–206Google Scholar
  6. 6.
    Vazquez AM, Davey MR, Short KC (1977) Organogenesis in cultures of Saintpaulia ionantha. Acta Hortic 78:249–259Google Scholar
  7. 7.
    Mithila J, Hall JC, Victor JMR, Saxena PK (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep 21:408–414PubMedGoogle Scholar
  8. 8.
    Murch SJ, Victor JMR, Saxena PK (2003) Auxin, calcium and sodium in somatic embryogenesis of African violet (Saintpaulia ionantha Wendl. Cv. Benjamin). Acta Hortic 625:201–209Google Scholar
  9. 9.
    Daud N, Taha RM, Hasbullah NA (2008) Studies on plant regeneration and somaclonal variation in Saintpaulia ionanttha Wendl (African violet). Pak J Biol Sci 11:1240–1245PubMedCrossRefGoogle Scholar
  10. 10.
    Taha RM, Daud N, Hasbullah NA (2010) Establishment of efficient regeneration system, acclimatization and somaclonal variation in Saintpaulia ionantha H. Wendl. Acta Hortic 865:115–121Google Scholar
  11. 11.
    Jain SM (1993) Somacloal variation in Begonia x elatior and Saintpaulia ionantha L. Sci Hortic 54:221–231CrossRefGoogle Scholar
  12. 12.
    Jain SM (1997) Micropropagation of selected somaclones of Begonia and Saintpaulia. J Biosci 22:585–592CrossRefGoogle Scholar
  13. 13.
    Khan S, Naseeb S, Ali K (2007) Callus induction, plant regeneration and acclimatization of African violet (Saintpaulia ionantha) using leaves as explants. Pak J Bot 39:1263–1268Google Scholar
  14. 14.
    Shajiee K, Tehranifar A, Naderi R, Khalighi A (2006) Somaclonal variation induced de novo leaf chimeric mutants during in vitro propagation of African violet (Saintpaulia ionantha Wendl.). Acta Hortic 725:337–340Google Scholar
  15. 15.
    Fiola JA, Hassan MA, Swartz HJ, Bors RH, McNicols R (1990) Effects of thidiazuron, light influence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell Tissue Organ Cult 20:223–228Google Scholar
  16. 16.
    Malik KA, Saxena PK (1992) Thidiazuron induces high frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust J Plant Physiol 19:731–740CrossRefGoogle Scholar
  17. 17.
    Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275CrossRefGoogle Scholar
  18. 18.
    Panaia M, Senaratna T, Dixon KW, Sivasithamparam A (2004) The role of cytokinins and thidiazuron in the stimulation of somatic embryogenesis in key members of the Restionaceae. Aust J Bot 52:257–262CrossRefGoogle Scholar
  19. 19.
    Sharma VK, Hansch R, Mendel RR, Schulze J (2005) Influence of Picloram and Thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity using meristematic shoot segments. Plant Breed 124:242CrossRefGoogle Scholar
  20. 20.
    Sheibani M, Nemati SH, Davarinejad GH, Azghandi AV, Habashi AA (2007) Induction of somatic embryogenesis in saffron using thidiazuron (TDZ). Acta Hortic 739:259–268Google Scholar
  21. 21.
    Chhabra G, Chaudhary D, Varma M, Sainger M, Jaiwal PK (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14:347–353CrossRefGoogle Scholar
  22. 22.
    Ma G, Lu J, da Silva JAT, Zhang X, Zhao J (2011) Shoot organogenesis and somatic embryogenesis from leaf and shoot explants of Ochna integerrima (Lour). Plant Cell Tissue Organ Cult 104:157–162CrossRefGoogle Scholar
  23. 23.
    Magyar-Tabori K, Dobranszki J, da Silva JAT, Bulley SM, Hudak I (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult 101:251–267CrossRefGoogle Scholar
  24. 24.
    Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490PubMedCrossRefGoogle Scholar
  25. 25.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. 26.
    Murthy BNS, Victor JMR, Singh RP, Fletcher RA, Saxena PK (1996) In vitro regeneration of chickpea (Cicer arietinum L):stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Regul 19:233–240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Plant AgricultureUniversity of GuelphOntarioCanada
  2. 2.Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.University of British ColumbiaKelownaCanada

Personalised recommendations