Skip to main content

Bayesian Inference

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 930))

Abstract

This chapter provides an overview of the Bayesian approach to data analysis, modeling, and statistical decision making. The topics covered go from basic concepts and definitions (random variables, Bayes’ rule, prior distributions) to various models of general use in biology (hierarchical models, in particular) and ways to calibrate and use them (MCMC methods, model checking, inference, and decision). The second half of this Bayesian primer develops an example of model setup, calibration, and inference for a physiologically based analysis of 1,3-butadiene toxicokinetics in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    Note that if the data were exactly what we expected a priori, there would be not much need to improve the model.

References

  1. Albert J (2007) Bayesian computation with R. Springer, New York

    Book  Google Scholar 

  2. Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York

    Google Scholar 

  3. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, New York

    Google Scholar 

  4. O’Hagan A (1994) Kendall’s advanced theory of statistics—volume 2B—Bayesian inference. Edward Arnold, London

    Google Scholar 

  5. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall, London

    Google Scholar 

  6. Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, New York

    Book  Google Scholar 

  7. Press SJ (1989) Bayesian statistics: principles, models, and applications. Wiley, New York

    Google Scholar 

  8. Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley, Chichester

    Google Scholar 

  9. Shafer G, Pearl J (1990) Readings in uncertain reasoning. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  10. Gelman A (2006) Multilevel (hierarchical) modeling: what it can and cannot do. Technometrics 48:432–435

    Article  Google Scholar 

  11. Chiu WA, Bois F (2007) An approximate method for population toxicokinetic analysis with aggregated data. J Agr Biol Environ Stat 12:346–363

    Article  Google Scholar 

  12. Pillai G, Mentre F, Steimer JL (2005) Non-linear mixed effects modeling—from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn 32:161–183

    Article  PubMed  CAS  Google Scholar 

  13. Dunson DB (2009) Bayesian nonparametric hierarchical modeling. Biom J 51:273–284

    Article  PubMed  Google Scholar 

  14. Gosh JK, Ramamoorthi RV (2003) Bayesian non-parametrics. Springer, New York

    Google Scholar 

  15. Bigelow JL, Dunson DB (2007) Bayesian adaptive regression splines for hierarchical data. Biometrics 63:724–732

    Article  PubMed  CAS  Google Scholar 

  16. Oppenheim J, Wehner S (2010) The uncertainty principle determines the nonlocality of quantum mechanics. Science 330:1072–1074

    Article  PubMed  CAS  Google Scholar 

  17. Garthwaite PH, Kadane JB, O’Hagan A (2005) Statistical methods for eliciting probability distributions. J Am Stat Assoc 100:680–700

    Article  CAS  Google Scholar 

  18. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in practice. Chapman & Hall, London

    Google Scholar 

  20. Liu JS (2001) Monte Carlo strategies in scientific computing. Springer, New York

    Google Scholar 

  21. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculation by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  22. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  23. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences (with discussion). Stat Sci 7:457–511

    Article  Google Scholar 

  24. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  PubMed  CAS  Google Scholar 

  25. Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York

    Google Scholar 

  26. Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc B 72:269–342

    Article  Google Scholar 

  27. Smith A, Gelfand A (1992) Bayesian statistics without tears: a sampling–resampling perspective. Am Stat 46:84–88

    Google Scholar 

  28. Rubin DB (1988) Using the SIR algorithm to simulate posterior distributions. In: Bernardo JM, De Groot MH, Lindley DV, Smith AFM (eds) Bayesian Statistics 3. Oxford University Press, Oxford, pp 395–402

    Google Scholar 

  29. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  30. Bois FY, Maszle D (1997) MCSim: a simulation program. J Stat Software 2(9). http://www.jstatsoft.org/v02/i09

  31. Bois FY (2009) GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 25:1453–1454

    Article  PubMed  CAS  Google Scholar 

  32. Hammitt JK, Shlyakhter AI (1999) The expected value of information and the probability of surprise. Risk Anal 19:135–152

    Google Scholar 

  33. Yokota F, Gray G, Hammitt JK, Thompson KM (2004) Tiered chemical testing: a value of information approach. Risk Anal 24:1625–1639

    Article  PubMed  Google Scholar 

  34. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  35. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  Google Scholar 

  36. Bois FY, Smith T, Gelman A, Chang H-Y, Smith A (1999) Optimal design for a study of butadiene toxicokinetics in humans. Toxicol Sci 49:213–224

    Article  PubMed  CAS  Google Scholar 

  37. Brochot C, Smith TJ, Bois FY (2007) Development of a physiologically based toxicokinetic model for butadiene and four major metabolites in humans: global sensitivity analysis for experimental design issues. Chem Biol Interact 167:168–183

    Article  PubMed  CAS  Google Scholar 

  38. Mezzetti M, Ibrahim JG, Bois FY, Ryan LM, Ngo L, Smith TJ (2003) A Bayesian compartmental model for the evaluation of 1,3-butadiene metabolism. J R Stat Soc C 52:291–305

    Article  Google Scholar 

  39. Micallef S, Smith TJ, Bois FY (2002) Modelling of intra-individual and inter-individual variability in 1,3-butadiene metabolism. In: PAGE 11—annual meeting of the population approach group in Europe, Population Approach Group in Europe, Paris, ISSN 1871–6032

    Google Scholar 

  40. Ngo L, Ryan LM, Mezzetti M, Bois FY, Smith TJ (2011) Estimating metabolic rate for butadiene at steady state using a Bayesian physiologically-based pharmacokinetic model. J Environ Ecol Stat 18:131–146

    Article  CAS  Google Scholar 

  41. Smith T, Bois FY, Lin Y-S, Brochot C, Micallef S, Kim D, Kelsey KT (2008) Quantifying heterogeneity in exposure-risk relationships using exhaled breath biomarkers for 1,3-butadiene exposures. J Breath Res 2:037018 (037010 p.)

    Google Scholar 

  42. Smith T, Lin Y-S, Mezzetti L, Bois FY, Kelsey K, Ibrahim J (2001) Genetic and dietary factors affecting human metabolism of 1,3-butadiene. Chem Biol Interact 135–136:407–428

    Article  PubMed  Google Scholar 

  43. Gelman A, Bois FY, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J Am Stat Assoc 91:1400–1412

    Article  Google Scholar 

  44. Bischoff KB, Dedrick RL, Zaharko DS, Longstreth JA (1971) Methotrexate pharmacokinetics. J Pharm Sci 60:1128–1133

    Article  PubMed  CAS  Google Scholar 

  45. Bois FY, Zeise L, Tozer TN (1990) Precision and sensitivity analysis of pharmacokinetic models for cancer risk assessment: tetrachloroethylene in mice, rats and humans. Toxicol Appl Pharmacol 102:300–315

    Article  PubMed  CAS  Google Scholar 

  46. Droz PO, Guillemin MP (1983) Human styrene exposure—V. Development of a model for biological monitoring. Int Arch Occup Environ Health 53:19–36

    Article  PubMed  CAS  Google Scholar 

  47. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72:1103–1127

    Article  PubMed  CAS  Google Scholar 

  48. Reddy M, Yang RS, Andersen ME, Clewell HJ III (2005) Physiologically based pharmacokinetic modeling: science and applications. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  49. Racine-Poon A, Wakefield J (1998) Statistical methods for population pharmacokinetic modelling. Stat Methods Med Res 7:63–84

    Article  PubMed  CAS  Google Scholar 

  50. Lunn DJ, Best N, Thomas A, Wakefield J, Spiegelhalter D (2002) Bayesian analysis of population PK/PD models: general concepts and software. J Pharmacokinet Biopharm 29:271–307

    CAS  Google Scholar 

  51. Bois F, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278:256–267

    Article  PubMed  CAS  Google Scholar 

  52. Fiserova-Bergerova V (1983) Physiological models for pulmonary administration and elimination of inert vapors and gases. In: Fiserova-Bergerova F (ed) Modeling of inhalation exposure to vapors: uptake, distribution, and elimination. CRC Press, Boca Raton, FL, pp 73–100

    Google Scholar 

  53. Deurenberg P, Weststrate JA, Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 65:105–141

    Article  PubMed  CAS  Google Scholar 

  54. Filser JG, Johanson G, Kessler W, Kreuzer PE, Stei P, Baur C, Csanady GA (1993) A pharmacokinetic model to describe toxicokinetic interactions between 1,3-butadiene and styrene in rats: predictions for human exposure, IARC Scientific Publication No. 127. In: Sorsa M, Pletonen K, Vainio H, Hemminki K (eds) Butadiene and styrene: assessment of health hazards, International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  55. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1:515–534

    Article  Google Scholar 

  56. Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation (with discussion). J Am Stat Assoc 82:528–550

    Article  Google Scholar 

  57. Amzal B, Bois FY, Parent E, Robert CP (2006) Bayesian optimal design via interacting MCMC. J Am Stat Assoc 101:773–785

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Y. Bois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bois, F.Y. (2013). Bayesian Inference. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 930. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-059-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-059-5_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-058-8

  • Online ISBN: 978-1-62703-059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics