Skip to main content

Modeling of Absorption

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Absorption takes place when a compound enters an organism, which occurs as soon as the molecules enter the first cellular bilayer(s) in the tissue(s) to which is it exposed. At that point, the compound is no longer part of the environment (which includes the alimentary canal for oral exposure), but has become part of the organism. If absorption is prevented or limited, then toxicological effects are also prevented or limited. Thus, modeling absorption is the first step in simulating/predicting potential toxicological effects. Simulation software used to model absorption of compounds of various types has advanced considerably over the past 15 years. There can be strong interactions between absorption and pharmacokinetics (PK), requiring state-of-the-art simulation computer programs that combine absorption with either compartmental pharmacokinetics (PK) or physiologically based pharmacokinetics (PBPK). Pharmacodynamic (PD) models for therapeutic and adverse effects are also often linked to the absorption and PK simulations, providing PK/PD or PBPK/PD capabilities in a single package. These programs simulate the interactions among a variety of factors including the physicochemical properties of the molecule of interest, the physiologies of the organisms, and in some cases, environmental factors, to produce estimates of the time course of absorption and disposition of both toxic and nontoxic substances, as well as their pharmacodynamic effects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Swaan PW, Marks GJ, Ryan FM et al (1994) Determination of transport rates for arginine and acetaminophen in rabbit intestinal tissues in vitro. Pharm Res 11(2):283–287

    Article  PubMed  CAS  Google Scholar 

  2. Slattery JT, Levy G (1979) Acetaminophen kinetics in acutely poisoned patients. Clin Pharmacol Ther 25(2):184–195

    PubMed  CAS  Google Scholar 

  3. Clements JA, Heading RC, Nimmo WS et al (1978) Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther 24(4):420–431

    PubMed  CAS  Google Scholar 

  4. Hogben CAM, Tocco DJ, Brodie BB et al (1959) On the mechanism of intestinal absorption of drugs. J Pharmacol Exp Ther 125:275–282

    PubMed  CAS  Google Scholar 

  5. Tubic M, Wagner D, Spahn-Langguth H et al (2006) In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res 23(8):1712–1720

    Article  PubMed  CAS  Google Scholar 

  6. Bolger MB, Lukacova V, Woltosz WS (2009) Simulations of the nonlinear dose dependence for substrates of influx and efflux transporters in the human intestine. AAPS J 11(2):353–363

    Article  PubMed  CAS  Google Scholar 

  7. Swaan PW (1998) Recent advances in intestinal macromolecular drug delivery via receptor- mediated transport pathways. Pharm Res 15(6):826–834

    Article  PubMed  CAS  Google Scholar 

  8. Palm K, Luthman K, Ros J et al (1999) Effect of molecular charge on intestinal epithelial drug transport: pH- dependent transport of cationic drugs. J Pharmacol Exp Ther 291(2):435–443

    PubMed  CAS  Google Scholar 

  9. Adson A, Raub TJ, Burton PS et al (1994) Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 83(11):1529–1536

    Article  PubMed  CAS  Google Scholar 

  10. Schiller C, Frohlich CP, Giessmann T et al (2005) Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 22:971–979

    Article  PubMed  CAS  Google Scholar 

  11. Wilson JP (1967) Surface area of the small intestine in man. Gut 8:618–621

    Article  PubMed  CAS  Google Scholar 

  12. Fordtran JS, Rector FC Jr, Ewton MF et al (1965) Permeability characteristics of the human small intestine. J Clin Invest 44(12):1935–1944

    Article  PubMed  CAS  Google Scholar 

  13. Billich CO, Levitan R (1969) Effects of sodium concentration and osmolality on water and electrolyte absorption form the intact human colon. J Clin Invest 48(7):1336–1347

    Article  PubMed  CAS  Google Scholar 

  14. Parrott N, Lukacova V, Fraczkiewicz G et al (2009) Predicting pharmacokinetics of drugs using physiologically based modeling-application to food effects. AAPS J 11(1):45–53

    Article  PubMed  CAS  Google Scholar 

  15. Agoram B, Woltosz WS, Bolger MB (2001) Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 50(Suppl 1):S41–S67

    Article  PubMed  CAS  Google Scholar 

  16. Bolger MB, Agoram B, Fraczkiewicz R et al (2003) Simulation of absorption, metabolism, and bioavailability. In: Waterbeemd HVD, Lennernäs H, Artursson P (eds) Drug bioavailability. Estimation of solubility, permeability and bioavailability. Wiley, New York

    Google Scholar 

  17. Avdeef A (2001) Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem 1(4):277–351

    Article  PubMed  CAS  Google Scholar 

  18. Yu LX, Amidon GL (1999) A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 186(2):119–125

    Article  PubMed  CAS  Google Scholar 

  19. Qiu Y, Kuo CH, Zappi ME (2001) Performance and simulation of ozone absorption and reactions in a stirred-tank reactor. Environ Sci Technol 35(1):209–215

    Article  PubMed  CAS  Google Scholar 

  20. Bogdanffy MS, Mathison BH, Kuykendall JR et al (1997) Critical factors in assessing risk from exposure to nasal carcinogens. Mutat Res 380(1–2):125–141

    PubMed  CAS  Google Scholar 

  21. Fasano WJ, McDougal JN (2008) In vitro dermal absorption rate testing of certain chemicals of interest to the Occupational Safety and Health Administration: summary and evaluation of USEPA’s mandated testing. Regul Toxicol Pharmacol 51(2):181–194

    Article  PubMed  CAS  Google Scholar 

  22. Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21(3):136–149

    Article  PubMed  CAS  Google Scholar 

  23. Mansour SA, Gad MF (2010) Risk assessment of pesticides and heavy metals contaminants in vegetables: a novel bioassay method using Daphnia magna Straus. Food Chem Toxicol 48(1):377–389

    Article  PubMed  CAS  Google Scholar 

  24. Bohus E, Coen M, Keun HC et al (2008) Temporal metabonomic modeling of l-arginine-induced exocrine pancreatitis. J Proteome Res 7(10):4435–4445

    Article  PubMed  CAS  Google Scholar 

  25. Andersen ME, Krishnan K (1994) Physiologically based pharmacokinetics and cancer risk assessment. Environ Health Perspect 102(Suppl 1):103–108

    Article  PubMed  Google Scholar 

  26. Dobrev ID, Andersen ME, Yang RSH (2002) In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Environ Health Perspect 110:1031–1039

    Article  PubMed  CAS  Google Scholar 

  27. Vinegar A, Jepson GW, Cisneros M et al (2000) Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling. Inhal Toxicol 12(8):751–763

    Article  PubMed  CAS  Google Scholar 

  28. Rao HV, Ginsberg GL (1997) A physiologically-based pharmacokinetic model assessment of methyl t-butyl ether in groundwater for bathing and showering determination. Risk Anal 17(5):583–598

    Article  PubMed  CAS  Google Scholar 

  29. Yang Y, Xu X, Georgopoulos P (2010) A Bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol 20(4):326–341

    Article  PubMed  CAS  Google Scholar 

  30. Campbell A (2009) Development of PBPK model of molinate and molinate sulfoxide in rats and humans. Regul Toxicol Pharmacol 53(3):195–204

    Article  PubMed  CAS  Google Scholar 

  31. Fagerholm U, Johansson M, Lennernas H (1996) Comparison between permeability coefficients in rat and human jejunum. Pharm Res 13(9):1336–1342

    Article  PubMed  CAS  Google Scholar 

  32. Sugano K (2009) Computational oral absorption simulation for Low-solubility compounds. Chem Biodivers 6:2014–2029

    Article  PubMed  CAS  Google Scholar 

  33. Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231–248

    Article  PubMed  CAS  Google Scholar 

  34. Davies NM, Feddah MR (2003) A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm 255(1–2):175–187

    Article  PubMed  CAS  Google Scholar 

  35. Son YJ, McConville JT (2009) Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm 2009(382):1–2

    Google Scholar 

  36. Kupferschmidt HH, Fattinger KE, Ha HR et al (1998) Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 45(4):355–359

    Article  PubMed  CAS  Google Scholar 

  37. Chilvers MA, O’Callaghan C (2000) Local mucociliary defence mechanisms. Paediatr Respir Rev 1(1):27–34

    Article  PubMed  CAS  Google Scholar 

  38. Metsugi Y, Miyaji Y, Ogawara K et al (2008) Appearance of double peaks in plasma concentration–time profile after oral administration depends on gastric emptying profile and weight function. Pharm Res 25(4):886–895

    Article  PubMed  CAS  Google Scholar 

  39. Weller S, Blum MR, Doucette M et al (1993) Pharmacokinetics of the acyclovir pro-drug valacyclovir after escalating single- and multiple-dose administration to normal volunteers. Clin Pharmacol Ther 54(6):595–605

    Article  PubMed  CAS  Google Scholar 

  40. Sinko PJ, Balimane PV (1998) Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir: 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm Drug Dispos 19:209–217

    Article  PubMed  CAS  Google Scholar 

  41. Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter S. Woltosz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Woltosz, W.S., Bolger, M.B., Lukacova, V. (2012). Modeling of Absorption. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics