Skip to main content

Evaluating the Localization and DNA Binding Complexity of Histones in Mature Sperm

  • Protocol
  • First Online:
Spermatogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 927))

Abstract

The paternal genome in many animal taxa is efficiently packaged into the sperm nucleus by switching from a histone (nucleosome)-based chromatin configuration to one using predominantly protamines. Nonetheless, various studies have shown that some nucleosomes, often containing modified histones are retained in mature sperm and bind DNA with distinct sequence compositions. Considering the significance of histone modifications in epigenetic phenomena and the fact that sperm histones and their bound DNA must be carried into the oocyte, this chapter describes methods aimed at examining and analysing the histone composition of sperm chromatin. The focus is on both microscopic visualisation and evaluation of sequence composition of histones and histone-bound DNA in human and mouse spermatozoa. However, similar methods may be applicable to the sperm of other mammalian and even non-mammalian classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rathke C et al (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700

    Article  PubMed  CAS  Google Scholar 

  2. Dadoune JP (2003) Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 61:56–75

    Article  PubMed  CAS  Google Scholar 

  3. Orsi GA et al (2009) Epigenetic and replacement roles of histone variant H3.3 in reproduction and development. Int J Dev Biol 53:231–243

    Article  PubMed  CAS  Google Scholar 

  4. Grimes SR Jr, Henderson N (1984) Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res 152:91–97

    Article  PubMed  CAS  Google Scholar 

  5. Christensen ME et al (1984) Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res 12:4575–4592

    Article  PubMed  CAS  Google Scholar 

  6. van der Heijden GW et al (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298:458–469

    Article  PubMed  Google Scholar 

  7. Hammoud SS et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  8. Gatewood JM et al (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666

    PubMed  CAS  Google Scholar 

  9. Brykczynska U et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687

    Article  PubMed  CAS  Google Scholar 

  10. Saida M et al (2011) Key gene regulatory sequences with distinctive ontological signatures associate with differentially endonuclease accessible mouse sperm chromatin. Reproduction 142(1):73–86

    Article  PubMed  CAS  Google Scholar 

  11. Arpanahi A et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349

    Article  PubMed  CAS  Google Scholar 

  12. Ramos L et al (2008) Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod 23:259–270

    Article  PubMed  CAS  Google Scholar 

  13. Sanders MM (1978) Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei. J Cell Biol 79:97–109

    Article  PubMed  CAS  Google Scholar 

  14. Henikoff S et al (2009) Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 19:460–469

    Article  PubMed  CAS  Google Scholar 

  15. Kramer JA et al (2000) Human spermatogenesis as a model to examine gene potentiation. Mol Reprod Dev 56:254–258

    Article  PubMed  CAS  Google Scholar 

  16. Fischer JJ et al (2008) Combinatorial effects of four histone modifications in transcription and differentiation. Genomics 91:41–51

    Article  PubMed  CAS  Google Scholar 

  17. van der Heijden GW et al (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8:34

    Article  PubMed  Google Scholar 

  18. Mortimer D (1994) Sperm recovery techniques to maximize fertilizing capacity. Reprod Fertil Dev 6:25–31

    Article  PubMed  CAS  Google Scholar 

  19. Palmer DK et al (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36

    Article  PubMed  CAS  Google Scholar 

  20. Soon LL et al (1997) Isolation of histones and related chromatin structures from spermatozoa nuclei of a dasyurid marsupial Sminthopsis crassicaudata. J Exp Zool 278:322–332

    Article  PubMed  CAS  Google Scholar 

  21. Li Y et al (2008) Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl 10:535–541

    Article  PubMed  CAS  Google Scholar 

  22. Pittoggi C et al (1999) A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci 112(Pt 20):3537–3548

    PubMed  CAS  Google Scholar 

  23. Steilmann C et al (2010) The interaction of modified histones with the bromodomain testis-specific (BRDT) gene and its mRNA level in sperm of fertile donors and subfertile men. Reproduction 140:435–443

    Article  PubMed  CAS  Google Scholar 

  24. O’Geen H et al (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41:577–580

    Article  PubMed  Google Scholar 

  25. Toedling J, Huber W (2008) Analyzing ChIP-chip data using bioconductor. PLoS Comput Biol 4:e1000227

    Article  PubMed  Google Scholar 

  26. Zhu LJ et al (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11:237

    Article  PubMed  Google Scholar 

  27. Jeffreys AJ et al (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6:136–145

    Article  PubMed  CAS  Google Scholar 

  28. Goodrich R et al (2007) The preparation of human spermatozoal RNA for clinical analysis. Arch Androl 53:161–167

    Article  PubMed  CAS  Google Scholar 

  29. Zalenskaya IA et al (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279:213–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of the British Biotechnology and Science Research Council (BBSRC) and the German Research Foundation (DFG), Project 1 of the Clinical Research Unit KFO 181/2 for supporting the work on which this chapter in based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Miller, D., Paradowska, A. (2013). Evaluating the Localization and DNA Binding Complexity of Histones in Mature Sperm. In: Carrell, D., Aston, K. (eds) Spermatogenesis. Methods in Molecular Biology, vol 927. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-038-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-038-0_40

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-037-3

  • Online ISBN: 978-1-62703-038-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics