Skip to main content

Improved Chemiluminescence Assay for Measuring Antioxidant Capacity of Seminal Plasma

  • Protocol
  • First Online:
Spermatogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 927))

Abstract

An improved enhanced chemiluminescence antioxidant assay utilizes horseradish peroxidase conjugate and luminol to produce a cell-free oxygen radical generating system. We introduce the use of a peroxidase enzyme stabilizer to prolong the production of oxygen radicals at a steady rate. Addition of antioxidants temporarily interrupts oxygen radical generation, resulting in an inhibition curve. A linear relationship exists between the area of the inhibition curve and the molar quantity of added antioxidant used to quantify total nonenzymatic antioxidant capacity (TAC) in biological fluids including seminal plasma. We streamline the existing enhanced chemiluminescence technique by using a microtiter plate luminometer. A plate luminometer is as accurate as a tube luminometer in measuring TAC, using identical reaction volumes. As little as 1–50 μL of sample may be analyzed. A plate luminometer can detect molar Trolox equivalents as low as 12.5 μM, compared to 25 μM in tube luminometer, using identical volumes. The plate luminometer assay is made even more rapid with use of an injector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceconi C et al (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221

    Article  PubMed  CAS  Google Scholar 

  2. Lewis SE et al (1995) Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 64:868–870

    PubMed  CAS  Google Scholar 

  3. Agarwal A et al (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843

    Article  PubMed  Google Scholar 

  4. Aitken J, Fisher H (1994) Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 16:259–267

    Article  PubMed  CAS  Google Scholar 

  5. Aitken RJ, Sawyer D (2003) The human spermatozoon – not waving but drowning. Adv Exp Med Biol 518:85–98

    Article  PubMed  Google Scholar 

  6. Alkan I et al (1997) Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol 157:140–143

    Article  PubMed  CAS  Google Scholar 

  7. Lewis SE et al (1997) Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril 67:142–147

    Article  PubMed  CAS  Google Scholar 

  8. Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48:835–850

    Article  PubMed  CAS  Google Scholar 

  9. Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8:851–862

    PubMed  CAS  Google Scholar 

  10. Ramya T et al (2011) Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Fertil Steril 95:135–140

    Article  PubMed  CAS  Google Scholar 

  11. Shamsi MB et al (2009) DNA integrity and semen quality in men with low seminal antioxidant levels. Mutat Res 665:29–36

    Article  PubMed  CAS  Google Scholar 

  12. Ochsendorf FR (1999) Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 5:399–420

    Article  PubMed  CAS  Google Scholar 

  13. Pasqualotto FF et al (2000) Seminal oxidative stress in patients with chronic prostatitis. Urology 55:881–885

    Article  PubMed  CAS  Google Scholar 

  14. Potts JM, Pasqualotto FF (2003) Seminal oxidative stress in patients with chronic prostatitis. Andrologia 35:304–308

    PubMed  CAS  Google Scholar 

  15. Shahed AR, Shoskes DA (2000) Oxidative stress in prostatic fluid of patients with chronic pelvic pain syndrome: correlation with gram positive bacterial growth and treatment response. J Androl 21:669–675

    PubMed  CAS  Google Scholar 

  16. Thomson LK et al (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24: 2061–2070

    Article  PubMed  CAS  Google Scholar 

  17. Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142: 288–297

    Article  PubMed  CAS  Google Scholar 

  18. Whitehead TP et al (1992) Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta 266:265–277

    Article  CAS  Google Scholar 

  19. Glazer AN (1990) Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168

    Article  PubMed  CAS  Google Scholar 

  20. Wayner DD et al (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37

    Article  PubMed  CAS  Google Scholar 

  21. Wayner DD et al (1987) The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 924:408–419

    Article  PubMed  CAS  Google Scholar 

  22. Harrison D et al (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91: 7A–11A

    Article  PubMed  CAS  Google Scholar 

  23. Cao G et al (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–311

    Article  PubMed  CAS  Google Scholar 

  24. Cao G et al (1995) Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 41:1738–1744

    PubMed  CAS  Google Scholar 

  25. Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315

    PubMed  CAS  Google Scholar 

  26. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  27. Mahfouz R et al (2009) Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril 91: 805–811

    Article  PubMed  Google Scholar 

  28. Said TM et al (2003) Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl 24:676–680

    PubMed  CAS  Google Scholar 

  29. Sharma RK et al (1999) The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14: 2801–2807

    Article  PubMed  CAS  Google Scholar 

  30. Heinecke JW (2003) Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. Am J Cardiol 91:12A–16A

    Article  PubMed  CAS  Google Scholar 

  31. Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95:2131–2138

    PubMed  CAS  Google Scholar 

  32. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111:383–389

    PubMed  CAS  Google Scholar 

  33. Rosen H, Klebanoff SJ (1976) Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest 58:50–60

    Article  PubMed  CAS  Google Scholar 

  34. Strube M et al (1997) Pitfalls in a method for assessment of total antioxidant capacity. Free Radic Res 26:515–521

    Article  PubMed  CAS  Google Scholar 

  35. Rhemrev JP et al (2000) Quantification of the nonenzymatic fast and slow TRAP in a postaddition assay in human seminal plasma and the antioxidant contributions of various seminal compounds. J Androl 21:913–920

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ashok Agarwal, Ph.D. of the Cleveland Clinic, Cleveland, Ohio, for sending us his TAC protocol, which we modified for this study. We also thank Professor Seymour Klebanoff, M.D. Ph.D., of the Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, for allowing us to use his tube luminometer and for illuminating discussions. The Paul G. Allen Foundation for Medical Research supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Muller, C.H., Lee, T.K.Y., Montaño, M.A. (2013). Improved Chemiluminescence Assay for Measuring Antioxidant Capacity of Seminal Plasma. In: Carrell, D., Aston, K. (eds) Spermatogenesis. Methods in Molecular Biology, vol 927. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-038-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-038-0_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-037-3

  • Online ISBN: 978-1-62703-038-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics