Skip to main content

Multiplex and Quantitative Pathogen Detection with High-Resolution Capillary Electrophoresis-Based Single-Strand Conformation Polymorphism

Part of the Methods in Molecular Biology book series (MIMB,volume 919)

Abstract

Among the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this report, a protocol for the detection of 12 pathogenic bacteria is provided. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing the easy identification of the pathogens.

Key words

  • Pathogen detection
  • 16S rRNA gene
  • CE-SSCP
  • High-resolution
  • Polymer matrix

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-029-8_15
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-029-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   179.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Briese T et al (2005) Diagnostic system for rapid and sensitive differential detection of pathogens. Emerg Infect Dis 11:310–313

    PubMed  CrossRef  Google Scholar 

  2. Hall RH (2002) Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 4:425–432

    PubMed  CrossRef  Google Scholar 

  3. Hebart H et al (2000) Early detection of Aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening. J Infect Dis 181:1713–1719

    PubMed  CrossRef  CAS  Google Scholar 

  4. Schlundt J (2002) New directions in foodborne disease prevention. Int J Food Microbiol 78:3–17

    PubMed  CrossRef  Google Scholar 

  5. Lin LH et al (2011) Rectal swab sampling followed by an enrichment culture-based real-time PCR assay to detect Salmonella enterocolitis in children. Clin Microbiol Infect 17:1421–1425. doi:10.1111/j.1469-0691.2010.03450.x

    PubMed  CrossRef  CAS  Google Scholar 

  6. Lampel KA, Orlandi PA, Kornegay L (2000) Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Appl Environ Microbiol 66:4539–4542

    PubMed  CrossRef  CAS  Google Scholar 

  7. Grace MB et al (2003) Development and assessment of a quantitative reverse transcription-PCR assay for simultaneous measurement of four amplicons. Clin Chem 49:1467–1475

    PubMed  CrossRef  CAS  Google Scholar 

  8. Andersen PS et al (2003) Capillary electrophoresis-based single strand DNA conformation analysis in high-throughput mutation screening. Hum Mutat 21:455–465

    PubMed  CrossRef  CAS  Google Scholar 

  9. Bouallagui H et al (2004) Microbial monitoring by molecular tools of a two-phase anaerobic bioreactor treating fruit and vegetable wastes. Biotechnol Lett 26:857–862

    PubMed  CrossRef  CAS  Google Scholar 

  10. Chachkhiani M et al (2004) 16S rDNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Bioresour Technol 93:227–232

    PubMed  CrossRef  CAS  Google Scholar 

  11. Leclerc M, Delgenes JP, Godon JJ (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809–819

    PubMed  CrossRef  CAS  Google Scholar 

  12. Dabert P, Delgenes JP, Godon JJ (2005) Monitoring the impact of bioaugmentation on the start up of biological phosphorus removal in a laboratory scale activated sludge ecosystem. Appl Microbiol Biotechnol 66:575–588

    PubMed  CrossRef  CAS  Google Scholar 

  13. Khammar N et al (2005) Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters. J Appl Microbiol 98:476–490

    PubMed  CrossRef  CAS  Google Scholar 

  14. King S, McCord BR, Riefler RG (2005) Capillary electrophoresis single-strand conformation polymorphism analysis for monitoring soil bacteria. J Microbiol Methods 60:83–92

    PubMed  CrossRef  CAS  Google Scholar 

  15. Chung JH et al (2007) Parallel analysis of antimicrobial activities in microbial community by SSCP based on CE. Electrophoresis 28:2416–2423

    PubMed  CrossRef  CAS  Google Scholar 

  16. Shin GW et al (2008) A two-step quantitative pathogen detection system based on capillary electrophoresis. Anal Biochem 383:31–37

    PubMed  CrossRef  CAS  Google Scholar 

  17. Shin GW et al (2009) A new single-step quantitative pathogen detection system: template-tagging followed by multiplex asymmetric PCR using common primers and CE-SSCP. Electrophoresis 30:2728–2736

    PubMed  CrossRef  CAS  Google Scholar 

  18. Kim SJ et al (2010) Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection. Electrophoresis 31:1108–1115

    PubMed  CrossRef  CAS  Google Scholar 

  19. Shin GW et al (2010) A novel pathogen detection system based on high-resolution CE-SSCP using a triblock copolymer matrix. J Sep Sci 33:1639–1643

    PubMed  CrossRef  CAS  Google Scholar 

  20. Shin GW et al (2010) Simultaneous quantitative detection of 12 pathogens using high-resolution CE-SSCP. Electrophoresis 31:2405–2410

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyoo Yeol Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hwang, H.S., Shin, G.W., Chung, B., Na, J., Jung, G.Y. (2013). Multiplex and Quantitative Pathogen Detection with High-Resolution Capillary Electrophoresis-Based Single-Strand Conformation Polymorphism. In: Phillips, T., Kalish, H. (eds) Clinical Applications of Capillary Electrophoresis. Methods in Molecular Biology, vol 919. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-029-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-029-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-028-1

  • Online ISBN: 978-1-62703-029-8

  • eBook Packages: Springer Protocols