Malaria pp 99-125 | Cite as

Transfection of Rodent Malaria Parasites

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 923)

Abstract

Gene manipulation is an invaluable tool to investigate and understand the biology of an organism. Although this technology has been applied to both the human and rodent malarial parasites (RMP), Plasmodium berghei in particular offers a more robust system due to a higher and more efficient transformation rate. Here, we describe a comprehensive transfection and selection protocol using P. berghei including a variant negative selection protocol administering 5-fluorocytosine to the animals in drinking water. Additionally, we discuss and assess the latest advances in gene manipulation technologies developed in RMP to gain a better understanding of Plasmodium biology.

Key words

Plasmodium berghei Transfection Reverse genetics Forward genetics Episomes Selectable markers Promoter swap Artificial chromosome 

References

  1. 1.
    Bártfai R et al (2010) H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223PubMedCrossRefGoogle Scholar
  2. 2.
    Bozdech Z et al (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:e5PubMedCrossRefGoogle Scholar
  3. 3.
    Florens L et al (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526PubMedCrossRefGoogle Scholar
  4. 4.
    Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRefGoogle Scholar
  5. 5.
    Khan SM et al (2005) Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121:675–687PubMedCrossRefGoogle Scholar
  6. 6.
    Lasonder E et al (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537–542PubMedCrossRefGoogle Scholar
  7. 7.
    Le Roch KG et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508PubMedCrossRefGoogle Scholar
  8. 8.
    Otto TD et al (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76:12–24PubMedCrossRefGoogle Scholar
  9. 9.
    Salcedo-Amaya AM et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106:9655–9660PubMedCrossRefGoogle Scholar
  10. 10.
    van Dijk MR et al (1995) Stable transfection of malaria parasite blood stages. Science 268:1358–1362PubMedCrossRefGoogle Scholar
  11. 11.
    Mota MM et al (2001) Gene targeting in the rodent malaria parasite Plasmodium yoelii. Mol Biochem Parasitol 113:271–278PubMedCrossRefGoogle Scholar
  12. 12.
    Reece SE, Thompson J (2008) Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON. Malar J 7:183PubMedCrossRefGoogle Scholar
  13. 13.
    Kooij TW et al (2005) A Plasmodium whole-genome synteny map: indels and synteny breakpoints as foci for species-specific genes. PLoS Pathog 1:e44PubMedCrossRefGoogle Scholar
  14. 14.
    Franke-Fayard B et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33PubMedCrossRefGoogle Scholar
  15. 15.
    Mair GR et al (2010) Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 6:e1000767PubMedCrossRefGoogle Scholar
  16. 16.
    Ponzi M et al (2009) Egress of Plasmodium berghei gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cell Microbiol 11:1272–1288PubMedCrossRefGoogle Scholar
  17. 17.
    Janse CJ et al (2006) High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1:346–356PubMedCrossRefGoogle Scholar
  18. 18.
    Janse CJ et al (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145:60–70PubMedCrossRefGoogle Scholar
  19. 19.
    van Dijk MR et al (1994) Mechanisms of pyrimethamine resistance in two different strains of Plasmodium berghei. Mol Biochem Parasitol 68:167–171PubMedCrossRefGoogle Scholar
  20. 20.
    Fidock DA, Wellems TE (1997) Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc Natl Acad Sci USA 94:10931–10936PubMedCrossRefGoogle Scholar
  21. 21.
    Braks JA et al (2006) Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res 34:e39PubMedCrossRefGoogle Scholar
  22. 22.
    Maier AG et al (2006) Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. Mol Biochem Parasitol 150:118–121PubMedCrossRefGoogle Scholar
  23. 23.
    van Schaijk BC et al (2010) Removal of heterologous sequences from Plasmodium falciparum mutants using FLPe-recombinase. PLoS One 5:e15121PubMedCrossRefGoogle Scholar
  24. 24.
    Laurentino EC et al (2011) Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cell Microbiol 13:1956–1974PubMedCrossRefGoogle Scholar
  25. 25.
    O’Donnell RA et al (2001) An alteration in concatameric structure is associated with efficient segregation of plasmids in transfected Plasmodium falciparum parasites. Nucleic Acids Res 29:716–724PubMedCrossRefGoogle Scholar
  26. 26.
    van Dijk MR et al (1997) Replication, expression and segregation of plasmid-borne DNA in genetically transformed malaria parasites. Mol Biochem Parasitol 86:155–162PubMedCrossRefGoogle Scholar
  27. 27.
    Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193PubMedCrossRefGoogle Scholar
  28. 28.
    Stinchcomb DT et al (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43PubMedCrossRefGoogle Scholar
  29. 29.
    Iwanaga S et al (2010) Functional identification of the Plasmodium centromere and generation of a Plasmodium artificial chromosome. Cell Host Microbe 7:245–255PubMedCrossRefGoogle Scholar
  30. 30.
    Chookajorn T et al (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci USA 104:899–902PubMedCrossRefGoogle Scholar
  31. 31.
    Freitas-Junior LH et al (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36PubMedCrossRefGoogle Scholar
  32. 32.
    Hernandez-Rivas R et al (2010) Telomeric heterochromatin in Plasmodium falciparum. J Biomed Biotechnol. doi:10.1155/2010/290501
  33. 33.
    Lopez-Rubio JJ et al (2007) 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305PubMedGoogle Scholar
  34. 34.
    Petter M et al (2011) Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog 7:e1001292PubMedCrossRefGoogle Scholar
  35. 35.
    Meissner M et al (2005) Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc Natl Acad Sci USA 102:2980–2985PubMedCrossRefGoogle Scholar
  36. 36.
    Armstrong CM, Goldberg DE (2007) An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Methods 4:1007–1009PubMedCrossRefGoogle Scholar
  37. 37.
    Muralidharan V et al (2011) Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc Natl Acad Sci USA 108:4411–4416PubMedCrossRefGoogle Scholar
  38. 38.
    Carvalho TG et al (2004) Conditional mutagenesis using site-specific recombination in Plasmodium berghei. Proc Natl Acad Sci USA 101:14931–14936PubMedCrossRefGoogle Scholar
  39. 39.
    Combe A et al (2009) Clonal conditional mutagenesis in malaria parasites. Cell Host Microbe 5:386–396PubMedCrossRefGoogle Scholar
  40. 40.
    de Koning-Ward TF et al (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949PubMedCrossRefGoogle Scholar
  41. 41.
    Ivics Z et al (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6:415–422PubMedCrossRefGoogle Scholar
  42. 42.
    Mátés L et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761PubMedCrossRefGoogle Scholar
  43. 43.
    Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966PubMedCrossRefGoogle Scholar
  44. 44.
    Schneider A, Leister D (2006) Forward genetic screening of insertional mutants. Methods Mol Biol 323:147–161PubMedGoogle Scholar
  45. 45.
    Yergeau DA, Mead PE (2007) Manipulating the Xenopus genome with transposable elements. Genome Biol 8(Suppl 1):S11PubMedCrossRefGoogle Scholar
  46. 46.
    Sakamoto H et al (2005) Towards systematic identification of Plasmodium essential genes by transposon shuttle mutagenesis. Nucleic Acids Res 33:e174PubMedCrossRefGoogle Scholar
  47. 47.
    Balu B et al (2005) High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc Natl Acad Sci USA 102:16391–16396PubMedCrossRefGoogle Scholar
  48. 48.
    Fonager J et al (2011) Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 12:155PubMedCrossRefGoogle Scholar
  49. 49.
    Balu B, Adams JH (2006) Functional genomics of Plasmodium falciparum through transposon-mediated mutagenesis. Cell Microbiol 8:1529–1536PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Infection and Immunity Glasgow Biomedical Research Centre, Faculty of Biomedical Life Sciences and Wellcome Trust Center for Molecular ParasitologyUniversity of GlasgowGlasgowUK
  2. 2.Division of Infection and Immunity Faculty of Biomedical Life Sciences and Wellcome TrustCenter for Molecular Parasitology Glasgow Biomedical Research Centre University of GlasgowGlasgowUK

Personalised recommendations