Advertisement

Malaria pp 507-522 | Cite as

Screening Inhibitors of P. berghei Blood Stages Using Bioluminescent Reporter Parasites

  • Jing-wen Lin
  • Mohammed Sajid
  • Jai Ramesar
  • Shahid M. Khan
  • Chris J. JanseEmail author
  • Blandine Franke-Fayard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 923)

Abstract

We describe two improved assays for in vitro and in vivo screening of inhibitors and chemicals for antimalarial activity against blood stages of the rodent malaria parasite, Plasmodium berghei. These assays are based on the determination of bioluminescence in small blood samples that is produced by reporter parasites expressing luciferase. Luciferase production increases as the parasite develops in a red blood cell and as the numbers of parasites increase during an infection. In the first assay, in vitro drug luminescence (ITDL) assay, the in vitro development of ring-stage parasites into mature schizonts in the presence and absence of candidate inhibitor(s) is quantified by measuring luciferase activity after the parasites have been allowed to mature into schizonts in culture. In the second assay, the in vivo drug luminescence (IVDL) assay, in vivo parasite growth (using a standard 4-day suppressive drug test) is quantified by measuring the luciferase activity of circulating parasites in samples of tail blood of drug-treated mice.

Key words

Malaria Plasmodium berghei Blood stages, drug screening Luciferase Luminescence Mice 

Notes

Acknowledgment

Jing-wen Lin was supported by the China Scholarship Council (CSC).

References

  1. 1.
    Smilkstein M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806PubMedCrossRefGoogle Scholar
  2. 2.
    Baniecki ML et al (2007) High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob Agents Chemother 51:716–723PubMedCrossRefGoogle Scholar
  3. 3.
    Gamo FJ et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310PubMedCrossRefGoogle Scholar
  4. 4.
    Guiguemde WA et al (2010) Chemical genetics of Plasmodium falciparum. Nature 465:311–315PubMedCrossRefGoogle Scholar
  5. 5.
    Plouffe D et al (2008) In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci USA 105:9059–9064PubMedCrossRefGoogle Scholar
  6. 6.
    Rastu-Kapur S et al (2008) Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 4:203–213CrossRefGoogle Scholar
  7. 7.
    Rottmann M et al (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180PubMedCrossRefGoogle Scholar
  8. 8.
    Franke-Fayard B et al (2008) Simple and sensitive antimalarial drug screening in vitro and in vivo using transgenic luciferase expressing Plasmodium berghei parasites. Int J Parasitol 38:1651–1662PubMedCrossRefGoogle Scholar
  9. 9.
    Peters W (1987) Chemotherapy and drug resistance in malaria. Academic, LondonGoogle Scholar
  10. 10.
    Janse CJ, Van Vianen PH (1994) Flow cytometry in malaria detection. Methods Cell Biol 42 Pt B:295–318PubMedCrossRefGoogle Scholar
  11. 11.
    Janse CJ et al (1994) Comparison of in vivo and in vitro antimalarial activity of artemisinin, dihydroartemisinin and sodium artesunate in the Plasmodium berghei rodent model. Int J Parasitol 24:589–594PubMedCrossRefGoogle Scholar
  12. 12.
    Sanchez BA et al (2004) Plasmodium berghei parasite transformed with green fluorescent protein for screening blood schizontocidal agents. Int J Parasitol 34:485–490PubMedCrossRefGoogle Scholar
  13. 13.
    Franke-Fayard B et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33PubMedCrossRefGoogle Scholar
  14. 14.
    Spaccapelo R et al (2010) Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol 176:205–217PubMedCrossRefGoogle Scholar
  15. 15.
    Janse CJ, Waters AP (1995) Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today 11:138–143PubMedCrossRefGoogle Scholar
  16. 16.
    Franke-Fayard B et al (2005) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci USA 102:11468–11473PubMedCrossRefGoogle Scholar
  17. 17.
    Gilks CF et al (1989) Host diet in experimental rodent malaria: a variable which can ­compromise experimental design and interpretation. Parasitology 98(Pt 2):175–177PubMedCrossRefGoogle Scholar
  18. 18.
    Chen L, Sendo F (2001) Cytokine and chemokine mRNA expression in neutrophils from CBA/NSlc mice infected with Plasmodium berghei ANKA that induces experimental cerebral malaria. Parasitol Int 50:139–143PubMedCrossRefGoogle Scholar
  19. 19.
    de Souza JB, Riley EM (2002) Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect 4:291–300PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jing-wen Lin
    • 1
  • Mohammed Sajid
    • 1
  • Jai Ramesar
    • 1
  • Shahid M. Khan
    • 1
  • Chris J. Janse
    • 1
    Email author
  • Blandine Franke-Fayard
    • 1
  1. 1.Center of Infectious Diseases, Leiden University Medical CenterLeidenThe Netherlands

Personalised recommendations