Malaria pp 481-491 | Cite as

Development and Use of TCR Transgenic Mice for Malaria Immunology Research

  • Yun-Chi Chen
  • Fidel ZavalaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 923)


T-cell receptor transgenic mice are powerful tools to study T cell responses to malaria parasites. They allow for a population of antigen specific T cells to be monitored during developing responses to immunization or parasite infection; this makes them particularly useful to study fundamental aspects of T cell activation, differentiation, and migration in different tissue compartments. Moreover, the use of these cells allows for a thorough analysis of the mechanisms of antiparasite activity by T cells.

Key words

T cells TCR transgenic mice Plasmodium blood stages Plasmodium liver stages 



We thank Ian Cockburn and Eric Wan for reviewing and editing the manuscript. The research of FZ is supported by NIH grant number AI44375. We thank the Bloomberg Family Foundation for its kind support.


  1. 1.
    von der Weid T et al (1996) Gene-targeted mice lacking B cells are unable to eliminate a blood stage malaria infection. J Immunol 156:2510–2516PubMedGoogle Scholar
  2. 2.
    Carvalho LH et al (2002) IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med 8:166–170PubMedCrossRefGoogle Scholar
  3. 3.
    Stephens R et al (2005) Malaria-specific transgenic CD4(+) T cells protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 106:1676–1684PubMedCrossRefGoogle Scholar
  4. 4.
    Brake DA et al (1988) Adoptive protection against Plasmodium chabaudi adami malaria in athymic nude mice by a cloned T cell line. J Immunol 140:1989–1993PubMedGoogle Scholar
  5. 5.
    Xu H et al (2000) CD4+ T cells acting independently of antibody contribute to protective immunity to Plasmodium chabaudi infection after apical membrane antigen 1 immunization. J Immunol 165:389–396PubMedGoogle Scholar
  6. 6.
    Tsuji M et al (1990) CD4+ cytolytic T cell clone confers protection against murine malaria. J Exp Med 172:1353–1357PubMedCrossRefGoogle Scholar
  7. 7.
    Renia L et al (1993) Effector functions of circumsporozoite peptide-primed CD4+ T cell clones against Plasmodium yoelii liver stages. J Immunol 150:1471–1478PubMedGoogle Scholar
  8. 8.
    Overstreet MG et al (2008) Protective CD8 T cells against Plasmodium liver stages: immunobiology of an ‘unnatural’ immune response. Immunol Rev 225:272–283PubMedCrossRefGoogle Scholar
  9. 9.
    Yanez DM et al (1996) Participation of ­lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157:1620–1624PubMedGoogle Scholar
  10. 10.
    Belnoue E et al (2002) On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol 169:6369–6375PubMedGoogle Scholar
  11. 11.
    Dembic Z et al (1986) Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature 320:232–238PubMedCrossRefGoogle Scholar
  12. 12.
    Pircher H et al (1989) Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342:559–561PubMedCrossRefGoogle Scholar
  13. 13.
    Oxenius A et al (1998) Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur J Immunol 28:390–400PubMedCrossRefGoogle Scholar
  14. 14.
    McSorley SJ et al (2002) Tracking Salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity 16:365–377PubMedCrossRefGoogle Scholar
  15. 15.
    Sponaas AM et al (2006) Malaria infection changes the ability of splenic dendritic cell ­populations to stimulate antigen-specific T cells. J Exp Med 203:1427–1433PubMedCrossRefGoogle Scholar
  16. 16.
    Stephens R, Langhorne J (2010) Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS Pathog 6:e1001208PubMedCrossRefGoogle Scholar
  17. 17.
    Sano G et al (2001) Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med 194:173–180PubMedCrossRefGoogle Scholar
  18. 18.
    Chakravarty S et al (2007) CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat Med 13:1035–1041PubMedCrossRefGoogle Scholar
  19. 19.
    Jung S et al (2002) In vivo depletion of CD11c  +  dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220PubMedCrossRefGoogle Scholar
  20. 20.
    Overstreet MG et al (2011) CD4+ T cells modulate expansion and survival but not functional properties of effector and memory CD8+ T cells induced by malaria sporozoites. PLoS One 6:e15948PubMedCrossRefGoogle Scholar
  21. 21.
    Cockburn IA et al (2010) Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. PLoS Pathog 6:e1000877PubMedCrossRefGoogle Scholar
  22. 22.
    Hafalla JC et al (2006) Priming of CD8+ T cell responses following immunization with heat-killed Plasmodium sporozoites. Eur J Immunol 36:1179–1186PubMedCrossRefGoogle Scholar
  23. 23.
    Hafalla JC et al (2007) Efficient development of Plasmodium liver stage-specific memory CD8+ T cells during the course of blood-stage malarial infection. J Infect Dis 196:1827–1835PubMedCrossRefGoogle Scholar
  24. 24.
    Cockburn IA et al (2008) Memory CD8+ T cell responses expand when antigen presentation overcomes T cell self-regulation. J Immunol 180:64–71PubMedGoogle Scholar
  25. 25.
    Chakravarty S et al (2008) Effector CD8+ T lymphocytes against liver stages of Plasmodium yoelii do not require gamma interferon for antiparasite activity. Infect Immun 76:3628–3631PubMedCrossRefGoogle Scholar
  26. 26.
    Miyakoda M et al (2008) Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 181:1420–1428PubMedGoogle Scholar
  27. 27.
    Lundie RJ et al (2008) Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha  +  dendritic cells. Proc Natl Acad Sci U S A 105:14509–14514PubMedCrossRefGoogle Scholar
  28. 28.
    Cockburn IA et al (2011) Dendritic cells and hepatocytes use distinct pathways to process protective antigen from Plasmodium in vivo. PLoS Pathog 7:e1001318PubMedCrossRefGoogle Scholar
  29. 29.
    Uckert W, Schumacher TN (2009) TCR transgenes and transgene cassettes for TCR gene therapy: status in 2008. Cancer Immunol Immunother 58:809–822PubMedCrossRefGoogle Scholar
  30. 30.
    Emerman M, Temin HM (1984) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39:449–467PubMedCrossRefGoogle Scholar
  31. 31.
    Rubinstein MP et al (2009) Loss of T cell-mediated antitumor immunity after construct-specific downregulation of retrovirally encoded T-cell receptor expression in vivo. Cancer Gene Ther 16:171–183PubMedCrossRefGoogle Scholar
  32. 32.
    Ghattas IR et al (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11:5848–5859PubMedGoogle Scholar
  33. 33.
    Hughes MS et al (2005) Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther 16:457–472PubMedCrossRefGoogle Scholar
  34. 34.
    Yang S et al (2008) Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther 15:1411–1423PubMedCrossRefGoogle Scholar
  35. 35.
    Holst J et al (2006) Rapid analysis of T-cell selection in vivo using T cell-receptor retrogenic mice. Nat Methods 3:191–197PubMedCrossRefGoogle Scholar
  36. 36.
    Scholten KB et al (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119:135–145PubMedCrossRefGoogle Scholar
  37. 37.
    de Felipe P et al (1999) Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy. Gene Ther 6:198–208PubMedCrossRefGoogle Scholar
  38. 38.
    Klump H et al (2001) Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy. Gene Ther 8:811–817PubMedCrossRefGoogle Scholar
  39. 39.
    Kouskoff V et al (1995) Cassette vectors directing expression of T cell receptor genes in transgenic mice. J Immunol Methods 180:273–280PubMedCrossRefGoogle Scholar
  40. 40.
    Kirak O et al (2010) Transnuclear mice with predefined T cell receptor specificities against Toxoplasma gondii obtained via SCNT. Science 328:243–248PubMedCrossRefGoogle Scholar
  41. 41.
    Badovinac VP et al (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26:827–841PubMedCrossRefGoogle Scholar
  42. 42.
    Marzo AL et al (2005) Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6:793–799PubMedCrossRefGoogle Scholar
  43. 43.
    Moon JJ et al (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213PubMedCrossRefGoogle Scholar
  44. 44.
    Obar JJ et al (2008) Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:859–869PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and ImmunologyJohn Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations