Malaria pp 465-479 | Cite as

Chimeric Parasites as Tools to Study Plasmodium Immunology and Assess Malaria Vaccines

  • Ian CockburnEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 923)


The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.

Key words

Plasmodium Transgenic parasites Vaccines T cells Antibodies 



I thank Andrea Radtke and Fidel Zavala (Johns Hopkins University) for their critical reading of the manuscript. Work in the Zavala laboratory is supported by NIH Grant number AI44375, the Johns Hopkins Malaria Research Institute and the Bloomberg Family Foundation.


  1. 1.
    Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRefGoogle Scholar
  2. 2.
    Cockburn IA, Zavala F (2007) T cell memory in malaria. Curr Opin Immunol 19:424–429PubMedCrossRefGoogle Scholar
  3. 3.
    Stephens R, Langhorne J (2006) Priming of CD4+ T cells and development of CD4+ T cell memory; lessons for malaria. Parasite Immunol 28:25–30PubMedCrossRefGoogle Scholar
  4. 4.
    Imai T et al (2010) Involvement of CD8+ T cells in protective immunity against murine blood-stage infection with Plasmodium yoelii 17XL strain. Eur J Immunol 40:1053–1061PubMedCrossRefGoogle Scholar
  5. 5.
    Hafalla JC et al (2006) Protective and pathogenic roles of CD8+ T cells during malaria infection. Parasite Immunol 28:15–24PubMedCrossRefGoogle Scholar
  6. 6.
    Stephens R et al (2005) Malaria-specific transgenic CD4(+) T cells protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 106:1676–1684PubMedCrossRefGoogle Scholar
  7. 7.
    Stephens R, Langhorne J (2010) Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS Pathog 6:e1001208PubMedCrossRefGoogle Scholar
  8. 8.
    Miyakoda M et al (2008) Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 181:1420–1428PubMedGoogle Scholar
  9. 9.
    Lundie RJ et al (2008) Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha  +  dendritic cells. Proc Natl Acad Sci USA 105:14509–14514PubMedCrossRefGoogle Scholar
  10. 10.
    Sponaas AM et al (2006) Malaria infection changes the ability of splenic dendritic cell ­populations to stimulate antigen-specific T cells. J Exp Med 203:1427–1433PubMedCrossRefGoogle Scholar
  11. 11.
    Lundie RJ et al (2010) Blood-stage Plasmodium berghei infection leads to short-lived parasite-associated antigen presentation by dendritic cells. Eur J Immunol 40:1674–1681PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson NS et al (2006) Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat Immunol 7:165–172PubMedCrossRefGoogle Scholar
  13. 13.
    Kimura D et al (2010) Production of IFN-gamma by CD4(+) T cells in response to malaria antigens is IL-2 dependent. Int Immunol 22:941–952PubMedCrossRefGoogle Scholar
  14. 14.
    Sano G et al (2001) Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med 194:173–180PubMedCrossRefGoogle Scholar
  15. 15.
    Chakravarty S et al (2007) CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat Med 13:1035–1041PubMedCrossRefGoogle Scholar
  16. 16.
    Cockburn IA et al (2011) Dendritic cells and hepatocytes use distinct pathways to process protective antigen from Plasmodium in vivo. PLoS Pathog 7:e1001318PubMedCrossRefGoogle Scholar
  17. 17.
    Van Kaer L et al (1992) TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 71:1205–1214PubMedCrossRefGoogle Scholar
  18. 18.
    Tabeta K et al (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156–164PubMedCrossRefGoogle Scholar
  19. 19.
    Pierce SK, Miller LH (2009) World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not. J Immunol 182:5171–5177PubMedCrossRefGoogle Scholar
  20. 20.
    Crompton PD et al (2010) A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci USA 107:6958–6963PubMedCrossRefGoogle Scholar
  21. 21.
    Holder AA (2009) The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 136:1445–1456PubMedCrossRefGoogle Scholar
  22. 22.
    Blackman MJ et al (1990) A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med 172:379–382PubMedCrossRefGoogle Scholar
  23. 23.
    Guevara Patino JA et al (1997) Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J Exp Med 186:1689–1699PubMedCrossRefGoogle Scholar
  24. 24.
    Branch OH et al (2000) Anti-merozoite ­surface protein-1 19-kDa IgG in mother-infant pairs naturally exposed to Plasmodium falciparum: subclass analysis with age, exposure to asexual parasitemia, and protection against malaria. V. The Asembo Bay Cohort Project. J Infect Dis 181:1746–1752PubMedCrossRefGoogle Scholar
  25. 25.
    Branch OH et al (1998) A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19-kiloDalton domain of Plasmodium falciparum in pregnant women and infants: associations with febrile illness, parasitemia, and anemia. Am J Trop Med Hyg 58:211–219PubMedGoogle Scholar
  26. 26.
    Dodoo D et al (1999) Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria. Infect Immun 67:2131–2137PubMedGoogle Scholar
  27. 27.
    Egan AF et al (1995) Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP1(19), the carboxy-­terminal fragment of the major merozoite ­surface protein of Plasmodium falciparum. Infect Immun 63:456–466PubMedGoogle Scholar
  28. 28.
    Egan AF et al (1996) Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. J Infect Dis 173:765–769PubMedCrossRefGoogle Scholar
  29. 29.
    Riley EM et al (1993) A longitudinal study of naturally acquired cellular and humoral immune responses to a merozoite surface protein (MSP1) of Plasmodium falciparum in an area of seasonal malaria transmission. Parasite Immunol 15:513–524PubMedCrossRefGoogle Scholar
  30. 30.
    O’Donnell RA et al (2001) Antibodies against merozoite surface protein (MSP)-1(19) are a major component of the invasion-inhibitory response in individuals immune to malaria. J Exp Med 193:1403–1412PubMedCrossRefGoogle Scholar
  31. 31.
    John CC et al (2004) Evidence that invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein-1 (MSP-1 19) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. J Immunol 173:666–672PubMedGoogle Scholar
  32. 32.
    Corran PH et al (2004) The fine specificity, but not the invasion inhibitory activity, of 19-kilodalton merozoite surface protein 1-specific antibodies is associated with resistance to malarial parasitemia in a cross-sectional survey in The Gambia. Infect Immun 72:6185–6189PubMedCrossRefGoogle Scholar
  33. 33.
    Murhandarwati EE et al (2008) Acquisition of invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein 1 in a transmigrant population requires multiple infections. J Infect Dis 198:1212–1218PubMedCrossRefGoogle Scholar
  34. 34.
    Gruner AC et al (2007) Sterile protection against malaria is independent of immune responses to the circumsporozoite protein. PLoS One 2:e1371PubMedCrossRefGoogle Scholar
  35. 35.
    Mauduit M et al (2009) A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites. PLoS One 4:e7717PubMedCrossRefGoogle Scholar
  36. 36.
    Tewari R et al (2002) Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. J Biol Chem 277:47613–47618PubMedCrossRefGoogle Scholar
  37. 37.
    Alonso PL et al (2005) Duration of protection with RTS, S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366:2012–2018PubMedCrossRefGoogle Scholar
  38. 38.
    Alonso PL et al (2004) Efficacy of the RTS, S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 364:1411–1420PubMedCrossRefGoogle Scholar
  39. 39.
    Cerami C et al (1992) The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70:1021–1033PubMedCrossRefGoogle Scholar
  40. 40.
    Zavala F et al (1985) Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228:1436–1440PubMedCrossRefGoogle Scholar
  41. 41.
    Sinigaglia F et al (1988) A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature 336:778–780PubMedCrossRefGoogle Scholar
  42. 42.
    Mellouk S et al (1990) Evaluation of an in vitro assay aimed at measuring protective antibodies against sporozoites. Bull World Health Organ 68(Suppl):52–59PubMedGoogle Scholar
  43. 43.
    Vanderberg JP, Frevert U (2004) Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int J Parasitol 34:991–996PubMedCrossRefGoogle Scholar
  44. 44.
    Persson C et al (2002) Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein. J Immunol 169:6681–6685PubMedGoogle Scholar
  45. 45.
    Kumar KA et al (2004) Quantitative Plasmodium sporozoite neutralization assay (TSNA). J Immunol Methods 292:157–164PubMedCrossRefGoogle Scholar
  46. 46.
    Gregson AL et al (2008) Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle containing epitopes of Plasmodium falciparum circumsporozoite protein. PLoS One 3:e1556PubMedCrossRefGoogle Scholar
  47. 47.
    Oliveira GA et al (2005) Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial. Infect Immun 73:3587–3597PubMedCrossRefGoogle Scholar
  48. 48.
    Calvo-Calle JM et al (2006) A linear peptide containing minimal T- and B-cell epitopes of Plasmodium falciparum circumsporozoite protein elicits protection against transgenic sporozoite challenge. Infect Immun 74:6929–6939PubMedCrossRefGoogle Scholar
  49. 49.
    Othoro C et al (2009) Enhanced immunogenicity of Plasmodium falciparum peptide vaccines using a topical adjuvant containing a potent synthetic Toll-like receptor 7 agonist, imiquimod. Infect Immun 77:739–748PubMedCrossRefGoogle Scholar
  50. 50.
    Tewari K et al (2010) Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and alphaDEC-CSP in non human primates. Vaccine 28:7256–7266PubMedCrossRefGoogle Scholar
  51. 51.
    Cao Y et al (2009) Construction of transgenic Plasmodium berghei as a model for evaluation of blood-stage vaccine candidate of Plasmodium falciparum chimeric protein 2.9. PLoS One 4:e6894PubMedCrossRefGoogle Scholar
  52. 52.
    de Koning-Ward TF et al (2003) A new rodent model to assess blood stage immunity to the Plasmodium falciparum antigen merozoite surface protein 119 reveals a protective role for invasion inhibitory antibodies. J Exp Med 198:869–875PubMedCrossRefGoogle Scholar
  53. 53.
    Sachdeva S et al (2006) Immunogenicity and protective efficacy of Escherichia coli expressed Plasmodium falciparum merozoite surface protein-1(42) using human compatible adjuvants. Vaccine 24:2007–2016PubMedCrossRefGoogle Scholar
  54. 54.
    Ogutu BR et al (2009) Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One 4:e4708PubMedCrossRefGoogle Scholar
  55. 55.
    Barr PJ et al (1991) Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J Exp Med 174:1203–1208PubMedCrossRefGoogle Scholar
  56. 56.
    Malkin EM et al (2005) Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23:3131–3138PubMedCrossRefGoogle Scholar
  57. 57.
    Ramjanee S et al (2007) The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Vaccine 25:886–894PubMedCrossRefGoogle Scholar
  58. 58.
    Mlambo G et al (2008) Murine model for assessment of Plasmodium falciparum transmission-blocking vaccine using transgenic Plasmodium berghei parasites expressing the target antigen Pfs25. Infect Immun 76:2018–2024PubMedCrossRefGoogle Scholar
  59. 59.
    Mlambo G et al (2010) Functional immunogenicity of baculovirus expressing Pfs25, a human malaria transmission-blocking vaccine candidate antigen. Vaccine 28:7025–7029PubMedCrossRefGoogle Scholar
  60. 60.
    Oliveira GA et al (2008) Class II-restricted protective immunity induced by malaria sporozoites. Infect Immun 76:1200–1206PubMedCrossRefGoogle Scholar
  61. 61.
    Rodrigues M et al (1993) The relative contribution of antibodies, CD4+ and CD8+ T cells to sporozoite-induced protection against malaria. Immunology 80:1–5PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and ImmunologyJohn Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations