Skip to main content

Genome-wide Chromatin Immunoprecipitation-Sequencing in Plasmodium

  • Protocol
  • First Online:
Malaria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 923))

Abstract

Chromatin immunoprecipitation (ChIP) studies have been used extensively in recent years to study the functional role of histone marks, variant histones, and other chromatin factors in gene expression in the human malaria parasite, Plasmodium falciparum. In this chapter, we present a ChIP-sequencing protocol optimized for blood-stage forms of this parasite. The processing of the immunoprecipitated DNA prior to high-throughput sequencing is performed in a way to minimize amplification biases due to the high genomic AT-content of the parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang L et al (2010) Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion. Proc Natl Acad Sci USA 107:2224–2229

    Article  PubMed  CAS  Google Scholar 

  2. Lopez-Rubio JJ et al (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–190

    Article  PubMed  CAS  Google Scholar 

  3. Salcedo-Amaya AM et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106:9655–9660

    Article  PubMed  CAS  Google Scholar 

  4. Bartfai R et al (2010) H2A.Z demarcates ­intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223

    Article  PubMed  CAS  Google Scholar 

  5. Cui L et al (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:715–725

    Article  Google Scholar 

  6. Freitas-Junior LH et al (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36

    Article  PubMed  CAS  Google Scholar 

  7. Flueck C et al (2009) Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 5:e1000569

    Article  PubMed  Google Scholar 

  8. Perez-Toledo K et al (2009) Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res 37:2596–2606

    Article  PubMed  CAS  Google Scholar 

  9. Flueck C et al (2010) A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog 6:e1000784

    Article  PubMed  Google Scholar 

  10. Chookajorn T et al (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci USA 104:899–902

    Article  PubMed  CAS  Google Scholar 

  11. Lopez-Rubio JJ et al (2007) 5´ flanking region of var genes nucleate histone modification ­patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305

    PubMed  CAS  Google Scholar 

  12. Mancio-Silva L et al (2008) Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum. J Cell Sci 121:2046–2053

    Article  PubMed  CAS  Google Scholar 

  13. Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9:179–191

    Article  PubMed  CAS  Google Scholar 

  14. Casneuf T et al (2007) In situ analysis of cross-hybridisation on microarrays and the inference of expression correlation. BMC Bioinformatics 8:461

    Article  PubMed  Google Scholar 

  15. Nagalakshmi U et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed  CAS  Google Scholar 

  16. Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  17. Su XZ et al (1996) Reduced extension temperatures required for PCR amplification of extremely A  +  T-rich DNA. Nucleic Acids Res 24:1574–1575

    Article  PubMed  CAS  Google Scholar 

  18. Lopez-Barragan MJ et al (2010) Effect of PCR extension temperature on high-throughput sequencing. Mol Biochem Parasitol 176:64–67

    Article  PubMed  Google Scholar 

  19. Quail MA et al (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  PubMed  CAS  Google Scholar 

  20. Quail MA et al (2009) Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet Chapter 18, Unit 18.2

    Google Scholar 

  21. Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  PubMed  CAS  Google Scholar 

  22. Nowak DE et al (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725

    Article  PubMed  CAS  Google Scholar 

  23. Zeng PY et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694, 696, 698

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Agency for Research (ANR Blanc 0274-01) and European Research Council Executive Agency Advanced Grant (PlasmoEscape 250320). T.N.S. was supported by a Human Frontier Science Program (HFSP) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Scherf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lopez-Rubio, JJ., Siegel, T.N., Scherf, A. (2012). Genome-wide Chromatin Immunoprecipitation-Sequencing in Plasmodium . In: Ménard, R. (eds) Malaria. Methods in Molecular Biology, vol 923. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-026-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-026-7_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-025-0

  • Online ISBN: 978-1-62703-026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics