Malaria pp 291-297 | Cite as

Microsphiltration: A Microsphere Matrix to Explore Erythrocyte Deformability

  • Catherine LavazecEmail author
  • Guillaume Deplaine
  • Innocent Safeukui
  • Sylvie Perrot
  • Geneviève Milon
  • Odile Mercereau-Puijalon
  • Peter H. David
  • Pierre Buffet
Part of the Methods in Molecular Biology book series (MIMB, volume 923)


The altered deformability of erythrocytes infected with Plasmodium falciparum is central in malaria ­pathogenesis, as it influences the hemodynamic properties of the infected cell and its retention in the spleen. Exported parasite proteins, as well as the shape and volume of the parasite itself, influence the deformability of the infected erythrocyte. To explore changes in erythrocyte deformability, we have developed a new method, called microsphiltration, based on filtration of erythrocytes through a mixture of metal microspheres that mimic the geometry of inter-endothelial splenic slits. As P. falciparum develops in its host cell, the retention rates observed in microspheres correlate with the progressive decrease of erythrocyte deformability and with the retention rates in the spleen. The yields of microsphiltration separation allow for molecular analyses of subpopulations with distinct mechanical phenotypes.

Key words

Plasmodium falciparum Erythrocyte Deformability Microspheres Filtration Spleen 


  1. 1.
    Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948PubMedCrossRefGoogle Scholar
  2. 2.
    Cranston HA et al (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403PubMedCrossRefGoogle Scholar
  3. 3.
    Nash GB et al (1989) Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood 74:855–861PubMedGoogle Scholar
  4. 4.
    Dondorp AM et al (1997) Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. Am J Trop Med Hyg 57:507–511PubMedGoogle Scholar
  5. 5.
    Safeukui I et al (2008) Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen. Blood 112:2520–2528PubMedCrossRefGoogle Scholar
  6. 6.
    Pei X et al (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110:1036–1042PubMedCrossRefGoogle Scholar
  7. 7.
    Silva MD et al (2005) A role for the Plasmodium falciparum RESA protein in resistance against heat shock demonstrated using gene disruption. Mol Microbiol 56:990–1003PubMedCrossRefGoogle Scholar
  8. 8.
    Mills JP et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci USA 104:9213–9217PubMedCrossRefGoogle Scholar
  9. 9.
    Pei X et al (2007) Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton. J Biol Chem 282:26754–26758PubMedCrossRefGoogle Scholar
  10. 10.
    Pei X et al (2005) Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J Biol Chem 280:31166–31171PubMedCrossRefGoogle Scholar
  11. 11.
    Glenister FK et al (2002) Contribution of ­parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99:1060–1063PubMedCrossRefGoogle Scholar
  12. 12.
    Herricks T et al (2009) Deformability limits of Plasmodium falciparum-infected red blood cells. Cell Microbiol 11:1340–1353PubMedCrossRefGoogle Scholar
  13. 13.
    Maier AG et al (2009) Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 7:341–354PubMedCrossRefGoogle Scholar
  14. 14.
    Garcia Y et al (2007) Identifying merozoite surface protein 4 and merozoite surface protein 7 Plasmodium falciparum protein family members specifically binding to human erythrocytes suggests a new malarial parasite-redundant survival mechanism. J Med Chem 50:5665–5675PubMedCrossRefGoogle Scholar
  15. 15.
    Sterkers Y et al (2007) Members of the low-molecular-mass rhoptry protein complex of Plasmodium falciparum bind to the surface of normal erythrocytes. J Infect Dis 196:617–621PubMedCrossRefGoogle Scholar
  16. 16.
    Layez C et al (2005) Plasmodium falciparum rhoptry protein RSP2 triggers destruction of the erythroid lineage. Blood 106:3632–3638PubMedCrossRefGoogle Scholar
  17. 17.
    Li J et al (2005) Non-invasive in situ simultaneous measurement of multi-parameter mechanical properties of red blood cell membrane. Acta Biochim Biophys Sin 37:391–395PubMedCrossRefGoogle Scholar
  18. 18.
    Maier AG et al (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134:48–61PubMedCrossRefGoogle Scholar
  19. 19.
    Bow H et al (2011) A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073PubMedCrossRefGoogle Scholar
  20. 20.
    Buffet PA et al (2009) Retention of erythrocytes in the spleen: a double-edged process in human malaria. Curr Opin Hematol 16:157–164PubMedCrossRefGoogle Scholar
  21. 21.
    Buffet PA et al (2006) Ex vivo perfusion of human spleens maintains clearing and processing functions. Blood 107:3745–3752PubMedCrossRefGoogle Scholar
  22. 22.
    Deplaine G et al (2011) The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117:88–95CrossRefGoogle Scholar
  23. 23.
    Sanyal S et al (2012) Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties. Blood 119:1–8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Catherine Lavazec
    • 1
    Email author
  • Guillaume Deplaine
    • 1
  • Innocent Safeukui
    • 1
  • Sylvie Perrot
    • 1
  • Geneviève Milon
    • 2
  • Odile Mercereau-Puijalon
    • 1
  • Peter H. David
    • 1
  • Pierre Buffet
    • 3
  1. 1.Unité d’Immunologie Moléculaire des ParasitesInstitut PasteurParisFrance
  2. 2.Laboratoire d’Immunophysiologie et ParasitismeInstitut PasteurParisFrance
  3. 3.Hôpital Pitié-SalpêtrièreUniversité Paris 6ParisFrance

Personalised recommendations