Advertisement

Malaria pp 259-266 | Cite as

Extraction of Hydrophilic Metabolites from Plasmodium falciparum-Infected Erythrocytes for Metabolomic Analysis

  • Kellen L. Olszewski
  • Manuel LlinásEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 923)

Abstract

Metabolomics is an increasingly common analytical approach for investigating metabolic networks of pathogenic organisms. This may be of particular use in the study of parasitic infections due to the intrinsic metabolic connection between the parasite and its host. In vitro cultures of the malaria parasite Plasmodium falciparum present a valuable platform to elucidate the structure and dynamics of the parasite’s metabolic network and to determine the mechanisms of action of antimalarial drugs and drug resistance mutations. Accurately measuring metabolite levels requires a reproducible method for quantifying intracellular metabolites. Here we present a simple protocol for extracting hydrophilic metabolites from P. falciparum-infected erythrocyte cultures.

Key words

Malaria Plasmodium falciparum Erythrocyte Red blood cell Metabolomics Mass spectrometry Liquid chromatography LC-MS Nuclear magnetic resonance NMR 

Notes

Acknowledgments

This work was funded by the Burroughs Welcome Fund, an NIH Director’s New Innovators award (1DP2OD001315-01) and with support from the Center for Quantitative Biology (P50 GM071508). KO is supported by an NSF Graduate Research Fellowship. We would also like to thank Ian Lewis for stimulating discussion and for critical reading of the manuscript.

References

  1. 1.
    Clarke CJ, Haselden JN (2008) Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol 36:140–147PubMedCrossRefGoogle Scholar
  2. 2.
    Kaddurah-Daouk R et al (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683PubMedCrossRefGoogle Scholar
  3. 3.
    Reaves ML, Rabinowitz JD (2011) Metabolomics in systems microbiology. Curr Opin Biotechnol 22:17–25PubMedCrossRefGoogle Scholar
  4. 4.
    Kell DB (2007) Metabolomic biomarkers: search, discovery and validation. Expert Rev Mol Diagn 7:329–333PubMedCrossRefGoogle Scholar
  5. 5.
    Rabinowitz JD (2007) Cellular metabolomics of Escherchia coli. Expert Rev Proteomics 4:187–198PubMedCrossRefGoogle Scholar
  6. 6.
    World Health Organization (2008) World Malaria Report 2008Google Scholar
  7. 7.
    Mackinnon MJ, Marsh K (2010) The selection landscape of malaria parasites. Science 328:866–871PubMedCrossRefGoogle Scholar
  8. 8.
    Dondorp AM et al (2011) Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 8:272–280Google Scholar
  9. 9.
    Olszewski KL et al (2010) Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature 466:774–778PubMedCrossRefGoogle Scholar
  10. 10.
    Olszewski KL et al (2009) Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5:191–199PubMedCrossRefGoogle Scholar
  11. 11.
    Teng R et al (2009) Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by (1)H NMR spectroscopy. NMR Biomed 22:292–302PubMedCrossRefGoogle Scholar
  12. 12.
    Kafsack BF, Llinas M (2010) Eating at the table of another: metabolomics of host-parasite interactions. Cell Host Microbe 7:90–99PubMedCrossRefGoogle Scholar
  13. 13.
    Yeo TW et al (2007) Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 204:2693–2704PubMedCrossRefGoogle Scholar
  14. 14.
    Lu W et al (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17:37–50PubMedCrossRefGoogle Scholar
  15. 15.
    Villas-Boas SG et al (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169PubMedCrossRefGoogle Scholar
  16. 16.
    Winder CL et al (2008) Global metabolic ­profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80:2939–2948PubMedCrossRefGoogle Scholar
  17. 17.
    Kim CC et al (2010) Improved methods for magnetic purification of malaria parasites and haemozoin. Malar J 9:17PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandez V (2008) Enrichment of late-stage infected erythrocytes in 60% Percoll. In Methods in Malaria Research. American Type Culture Collection, Manassas, Virginia, p 25Google Scholar
  19. 19.
    Dunn WB et al (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis IA et al (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal Chem 79:9385–9390PubMedCrossRefGoogle Scholar
  21. 21.
    Li JV et al (2008) Global metabolic responses of NMRI mice to an experimental Plasmodium berghei infection. J Proteome Res 7:3948–3956PubMedCrossRefGoogle Scholar
  22. 22.
    Mehta M et al (2006) Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. J Vector Borne Dis 43:95–103PubMedGoogle Scholar
  23. 23.
    Besteiro S et al (2010) Exploring metabolomic approaches to analyse phospholipid biosynthetic pathways in Plasmodium. Parasitology 137:1343–1356PubMedCrossRefGoogle Scholar
  24. 24.
    van Brummelen AC et al (2009) Co-inhibition of Plasmodium falciparum S-adeno­sylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. J Biol Chem 284:4635–4646PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang B et al (2011) A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 50:3570–3577PubMedCrossRefGoogle Scholar
  26. 26.
    Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234PubMedCrossRefGoogle Scholar
  27. 27.
    Bajad SU et al (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88PubMedCrossRefGoogle Scholar
  28. 28.
    Lu W et al (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242PubMedCrossRefGoogle Scholar
  29. 29.
    Lu W et al (2010) Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal Chem 82:3212–3221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA

Personalised recommendations