Malaria pp 189-211 | Cite as

DNA Microarray-Based Genome-Wide Analyses of Plasmodium Parasites

  • Zbynek BozdechEmail author
  • Sachel Mok
  • Archna P. Gupta
Part of the Methods in Molecular Biology book series (MIMB, volume 923)


DNA microarray is presently one of the most powerful and fastest growing technologies for genomic research of infectious diseases. Accordingly, DNA microarray-based global analyses of Plasmodium parasites provided many insights into the general biology of malaria infection. From the parasite perspective, it was shown that the complex Plasmodium life cycle is characterized by a high level of coordination in gene expression but at the same time parasites have a considerable capacity to alter their transcriptional profile as a response to external stimuli and/or adaptation to varying growth conditions in their host. In addition to transcriptional profiling, DNA microarrays were shown to be useful for quantitative analyses of Plasmodium genomic DNA including characterizations of sequence polymorphisms and copy number variants (CNV) as well as genomic loci associated with different chromatin factors (e.g., immunoprecipitated material (ChIP-on-chip)). Here, we present protocols for transcriptional profiling, comparative genomic hybridization (CGH), and ChIP-on-chip analyses that have been developed for the use of low-density long oligonucleotide DNA microarrays of Plasmodium species. Many of the presented procedures including RNA purification, DNA amplification, and chromatin immunoprecipitation are likely to be transferable to other genomic platforms such as other microarray technologies and new generation sequencing.

Key words

Plasmodium genomics Microarray hybridization Transcription profiling Gene expression Comparative genomic hybridization DNA microarray chip analyzed chromatin immunoprecipitation (ChIP-on-chip) SMART PCR 



We thank Ms. Lin Zhaoting for her technical assistance. The work was supported by the Singapore National Medical Research Council grant #IRG10my058 and Singapore Biomedical Research Council grant # 09/1/22/19/614.


  1. 1.
    Rathod PK et al (2002) DNA microarrays for malaria. Trends Parasitol 18:39–45PubMedCrossRefGoogle Scholar
  2. 2.
    Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRefGoogle Scholar
  3. 3.
    Le Roch KG et al (2002) Monitoring the chromosome 2 intraerythrocytic transcriptome of Plasmodium falciparum using oligonucleotide arrays. Am J Trop Med Hyg 67:233–243PubMedGoogle Scholar
  4. 4.
    Bozdech Z et al (2003) Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol 4:R9PubMedCrossRefGoogle Scholar
  5. 5.
    Bozdech Z et al (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5PubMedCrossRefGoogle Scholar
  6. 6.
    Bozdech Z et al (2008) The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci USA 105:16290–16295PubMedCrossRefGoogle Scholar
  7. 7.
    Le Roch KG et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508PubMedCrossRefGoogle Scholar
  8. 8.
    Silvestrini F et al (2005) Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol Biochem Parasitol 143:100–110PubMedCrossRefGoogle Scholar
  9. 9.
    Young JA et al (2005) The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol 143:67–79PubMedCrossRefGoogle Scholar
  10. 10.
    Tarun AS et al (2008) A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA 105:305–310PubMedCrossRefGoogle Scholar
  11. 11.
    Daily JP et al (2007) Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450:1091–1095PubMedCrossRefGoogle Scholar
  12. 12.
    Llinas M et al (2006) Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res 34:1166–1173PubMedCrossRefGoogle Scholar
  13. 13.
    Mackinnon MJ et al (2009) Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog 5:e1000644PubMedCrossRefGoogle Scholar
  14. 14.
    Mok S et al (2011) Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 12:391PubMedCrossRefGoogle Scholar
  15. 15.
    Gunasekera AM et al (2007) Plasmodium falciparum: genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Exp Parasitol 117:87–92PubMedCrossRefGoogle Scholar
  16. 16.
    Hu G et al (2009) Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol 28:91–98PubMedCrossRefGoogle Scholar
  17. 17.
    Natalang O et al (2008) Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate. BMC Genomics 9:388PubMedCrossRefGoogle Scholar
  18. 18.
    Oakley MS et al (2007) Molecular factors and biochemical pathways induced by febrile temperature in intraerythrocytic Plasmodium falciparum parasites. Infect Immun 75:2012–2025PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Rubio JJ et al (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–190PubMedCrossRefGoogle Scholar
  20. 20.
    Salcedo-Amaya AM et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106:9655–9660PubMedCrossRefGoogle Scholar
  21. 21.
    Tan JC et al (2011) An optimized microarray platform for assaying genomic variation in Plasmodium falciparum field populations. Genome Biol 12:R35PubMedCrossRefGoogle Scholar
  22. 22.
    Chaal BK et al (2010) Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Pathog 6:e1000737PubMedCrossRefGoogle Scholar
  23. 23.
    Hu G et al (2007) Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy. BMC Bioinformatics 8:350PubMedCrossRefGoogle Scholar
  24. 24.
    Liew KJ et al (2010) Defining species specific genome differences in malaria parasites. BMC Genomics 11:128PubMedCrossRefGoogle Scholar
  25. 25.
    Edgar R et al (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedCrossRefGoogle Scholar
  26. 26.
    Chenchik A et al (1998) Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR. In: Siebert PD, Larrick JW (eds) Gene cloning and analysis by RT-PCR. BioTechniques Books, Natick, MA, pp 305–319Google Scholar
  27. 27.
    Bohlander SK et al (1992) A method for the rapid sequence-independent amplification of microdissected chromosomal material. Genomics 13:1322–1324PubMedCrossRefGoogle Scholar
  28. 28.
    Eisen MB, Brown PO (1999) DNA arrays for analysis of gene expression. Methods Enzymol 303:179–205PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor S et al (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res 31:e87PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations