Skip to main content

Exploring Substrate Diffusion in Channels Using Biased Molecular Dynamics Simulations

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

Substrate transport and diffusion through membrane-bound channels are processes that can span a range of time scales, with only the fastest ones being amenable to most atomic-scale equilibrium molecular dynamics (MD) simulations. However, the application of forces within a simulation can greatly accelerate diffusion processes, revealing important structural and energetic features of the channel. Here, we demonstrate the use of two methods for applying biases to a substrate in a simulation, using the ammonia/ammonium transporter AmtB as an example. The first method, steered MD, applies a constant force or velocity constraint to the substrate, permitting the exploration of potential substrate pathways and the barriers encountered, although typically far outside of equilibrium. On the other hand, the second method, adaptive biasing forces, is quasi-equilibrium, permitting the derivation of a potential of mean force, which characterizes the free energy of the substrate during transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khalili-Araghi F et al (2009) Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol 19:128–137

    Article  PubMed  CAS  Google Scholar 

  2. Izrailev S et al (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581

    Article  PubMed  CAS  Google Scholar 

  3. Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Science 316:1144–1148

    Article  PubMed  CAS  Google Scholar 

  4. Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci U S A 98:3658–3661

    Article  PubMed  CAS  Google Scholar 

  5. Jarzynski C (1997) Equilibrium free-energy differences from nonequilibrium measurements: a master equation approach. Phys Rev E 56:5018–5035

    Article  CAS  Google Scholar 

  6. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  7. Park S et al (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119:3559–3566

    Article  CAS  Google Scholar 

  8. Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120:5946–5961

    Article  PubMed  CAS  Google Scholar 

  9. Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115:9169–9183

    Article  CAS  Google Scholar 

  10. Darve E, Rodríguez-Gómez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128:144120

    Article  PubMed  Google Scholar 

  11. Hénin J, Chipot C (2004) Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys 121:2904–2914

    Article  PubMed  Google Scholar 

  12. Hénin J et al (2010) Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theor Comp 6:35–47

    Article  Google Scholar 

  13. Chen H et al (2007) Charge delocalization in proton channels. I. The aquaporin channels and proton blockage. Biophys J 92:46–60

    Article  PubMed  CAS  Google Scholar 

  14. Ilan B et al (2004) The mechanism of proton exclusion in aquaporin channels. Proteins 55:223–228

    Article  PubMed  CAS  Google Scholar 

  15. Jensen MØ et al (2002) Energetics of glycerol conduction through aquaglyceroporin. GlpF. Proc Natl Acad Sci U S A 99:6731–6736

    Article  PubMed  CAS  Google Scholar 

  16. Wang Y, Schulten K, Tajkhorshid E (2005) What makes an aquaporin a glycerol channel: a comparative study of AqpZ and GlpF. Structure 13:1107–1118

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y, Tajkhorshid E (2008) Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc Natl Acad Sci U S A 105:9598–9603

    Article  PubMed  CAS  Google Scholar 

  18. Celik L, Schiott B, Tajkhorshid E (2008) Substrate binding and formation of an occluded state in the leucine transporter. Biophys J 94:1600–1612

    Article  PubMed  CAS  Google Scholar 

  19. Jensen MØ et al (2007) Sugar transport across lactose permease probed by steered molecular dynamics. Biophys J 93:92–102

    Article  PubMed  CAS  Google Scholar 

  20. Yin Y et al (2006) Sugar binding and protein conformational changes in lactose permease. Biophys J 91:3972–3985

    Article  PubMed  CAS  Google Scholar 

  21. Gumbart J, Wiener MC, Tajkhorshid E (2007) Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys J 93:496–504

    Article  PubMed  CAS  Google Scholar 

  22. Gumbart J, Schulten K (2006) Molecular dynamics studies of the archaeal translocon. Biophys J 90:2356–2367

    Article  PubMed  CAS  Google Scholar 

  23. Gumbart J, Schulten K (2007) Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46:11147–11157

    Article  PubMed  CAS  Google Scholar 

  24. Gumbart J, Schulten K (2008) The roles of pore ring and plug in the SecY protein-conducting channel. J Gen Physiol 132:709–719

    Article  PubMed  CAS  Google Scholar 

  25. Henin J et al (2008) Diffusion of glycerol through Escherichia coli aquaglyceroporin GlpF. Biophys J 94:832–839

    Article  PubMed  CAS  Google Scholar 

  26. Dehez F, Pebay-Peyroula E, Chipot C (2008) Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J Am Chem Soc 130:12725–12733

    Article  PubMed  CAS  Google Scholar 

  27. Ivanov I et al (2007) Barriers to ion translocation in cationic and anionic receptors from the cys-loop family. J Am Chem Soc 129:8217–8224

    Article  PubMed  CAS  Google Scholar 

  28. Bostick DL, Brooks CL III (2007) Deprotonation by dehydration: the origin of ammonium sensing in the AmtB channel. PLoS Comput Biol 3:e22

    Article  PubMed  Google Scholar 

  29. Lamoureux G, Klein ML, Bernèche S (2007) A stable water chain in the hydrophobic pore of the AmtB ammonium transporter. Biophys J 92:L82–L84

    Article  PubMed  CAS  Google Scholar 

  30. Lin Y, Cao Z, Mo Y (2006) Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport. J Am Chem Soc 128:10876–10884

    Article  PubMed  CAS  Google Scholar 

  31. Luzhkov VB et al (2006) Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB. Biochemistry 45:10807–10814

    Article  PubMed  CAS  Google Scholar 

  32. Nygaard TP et al (2006) Ammonium recruitment and ammonia transport by E. coli ammonia channel AmtB. Biophys J 91:4401–4412

    Article  PubMed  CAS  Google Scholar 

  33. Yang H et al (2007) Detailed mechanism for AmtB conducting NH +4 /NH3: molecular dynamics simulations. Biophys J 92:877–885

    Article  PubMed  CAS  Google Scholar 

  34. Khademi S et al (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305:1587–1594

    Article  PubMed  CAS  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  36. MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  37. MacKerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comp Chem 25:1400–1415

    Article  CAS  Google Scholar 

  38. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (P41-RR005969). Simulations were run at the National Center for Supercomputing Applications (MCA93S028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Gumbart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gumbart, J. (2012). Exploring Substrate Diffusion in Channels Using Biased Molecular Dynamics Simulations. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics