Skip to main content

Comparative Modeling of Lipid Receptors

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

  • 2260 Accesses

Abstract

Comparative modeling is a powerful technique to generate models of proteins from families already represented by members with experimentally characterized three-dimensional structures. The method is particularly important for modeling membrane-bound receptors in the G Protein-Coupled Receptor (GPCR) family, such as many of the lipid receptors (such as the cannabinoid, prostanoid, lysophosphatidic acid, sphingosine 1-phosphate, and eicosanoid receptor family members), as these represent particularly challenging targets for experimental structural characterization methods. Although challenging modeling targets, these receptors have been linked to therapeutic indications that vary from nociception to cancer, and thus are of interest as therapeutic targets. Accurate models of lipid receptors are therefore valuable tools in the drug discovery and optimization phases of therapeutic development. This chapter describes the construction and evaluation of comparative structural models of lipid receptors beginning with the selection of template structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esposito EX, Tobi D, Madura JD (2006) Comparative protein modeling. In: Lipkowitz KB, Cundari TR, Gillet VJ (eds) Reviews in computational chemistry. Wiley, Hoboken, N. J, pp 57–167

    Chapter  Google Scholar 

  2. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp R, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  3. Parrill AL, Baker DL, Wang D, Fischer DJ, Bautista DL, van Brocklyn J, Spiegel S, Tigyi G (2000) Structural features of EDG1 receptor-ligand complexes revealed by computational modeling and mutagenesis. In: Goetzl EJ, Lynch KR (eds) Lysophospholipids and eicosanoids in biology and pathophysiology. New York Academy of Sciences, New York, pp 330–339

    Google Scholar 

  4. Parrill AL, Wang D-A, Bautista DL, Van Brocklyn JR, Lorincz Z, Fischer DJ, Baker DL, Liliom K, Spiegel S, Tigyi G (2000) Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. J Biol Chem 275:39379–39384

    Article  PubMed  CAS  Google Scholar 

  5. Wang D, Lorincz Z, Bautista DL, Liliom K, Tigyi G, Parrill AL (2001) A single amino acid determines ligand specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J Biol Chem 276:49213–49220

    Article  PubMed  CAS  Google Scholar 

  6. Holdsworth G, Osborne DA, Pham TT, Fells JI, Hutchinson G, Milligan G, Parrill AL (2004) A single amino acid determines preference between phospholipids and reveals length restriction for activation of the S1P4 receptor. BMC Biochem 5:12

    Article  PubMed  Google Scholar 

  7. Fujiwara Y, Sardar V, Tokumura A, Baker D, Murakami-Murofushi K, Parrill A, Tigyi G (2005) Identification of residues responsible for ligand recognition and regioisomeric selectivity of lysophosphatidic acid receptors expressed in mammalian cells. J Biol Chem 280:35038–35050

    Article  PubMed  CAS  Google Scholar 

  8. Inagaki Y, Pham TT, Fujiwara Y, Kohno T, Osborne DA, Igarashi Y, Tigyi G, Parrill AL (2005) Sphingosine-1-phosphate analog recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. Biochem J 389:187–195

    Article  PubMed  CAS  Google Scholar 

  9. Fujiwara Y, Osborne DA, Walker MD, Wang DA, Bautista DA, Liliom K, Van Brocklyn JR, Parrill AL, Tigyi G (2007) Identification of the hydrophobic ligand binding pocket of the S1P1 receptor. J Biol Chem 282:2374–2385

    Article  PubMed  CAS  Google Scholar 

  10. Valentine WJ, Fells JI, Perygin DH, Mujahid S, Yokoyama K, Fujiwara Y, Tsukahara R, Van Brocklyn JR, Parrill AL, Tigyi G (2008) Subtype-specific residues involved in ligand activation of the endothelial differentiation gene family lysophosphatidic acid receptors. J Biol Chem 283:12175–12187

    Article  PubMed  CAS  Google Scholar 

  11. Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD, Gawrisch K, Pitman MC, Reggio PH (2010) A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem 285:17954–17964

    Article  PubMed  CAS  Google Scholar 

  12. Ruan KH, Wijaya C, Cervantes V, Wu J (2008) Characterization of the prostaglandin H2 mimic: binding to the purified human thromboxane A2 receptor in solution. Arch Biochem Biophys 477:396–403

    Article  PubMed  CAS  Google Scholar 

  13. Stitham J, Stojanovic A, Merenick BL, O’Hara KA, Hwa J (2003) The unique ligand-binding pocket for the human prostacyclin receptor. Site-directed mutagenesis and molecular modeling. J Biol Chem 278:4250–4257

    Article  PubMed  CAS  Google Scholar 

  14. Jo E, Sanna MG, Gonzalez-Cabrera PJ, Thangada S, Tigyi G, Osborne DA, Hla T, Parrill AL, Rosen H (2005) S1P1-Selective in vivo-active agonists from high throughput screening: off-the-shelf chemical probes of receptor interactions, signaling and fate. Chem Biol 12:703–715

    Article  PubMed  CAS  Google Scholar 

  15. Fells JI, Tsukahara R, Fujiwara Y, Liu J, Perygin DH, Osborne DA, Tigyi G, Parrill AL (2008) Identification of non-lipid LPA3 antagonists by virtual screening. Bioorg Med Chem 16:6207–6217

    Article  PubMed  CAS  Google Scholar 

  16. Fells JI, Tsukahara R, Liu J, Tigyi G, Parrill AL (2009) Structure-based drug design identifies novel LPA3 antagonists. Bioorg Med Chem 17:7457–7464

    Article  PubMed  CAS  Google Scholar 

  17. Fells JI, Tsukahara R, Liu J, Tigyi G, Parrill AL (2010) 2D binary QSAR modeling of LPA3 receptor antagonism. J Mol Graph Model 28:828–833

    Article  PubMed  CAS  Google Scholar 

  18. Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 8:403–421

    Article  PubMed  CAS  Google Scholar 

  19. Martin-Moreno AM, Reigada D, Ramirez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimers’ disease. Mol Pharmacol 79(6):964–973

    Article  PubMed  CAS  Google Scholar 

  20. Parrill AL (2008) Lysophospholipid interactions with protein targets. Biochim Biophys Acta 1781:540–546

    Article  PubMed  CAS  Google Scholar 

  21. Im DS (2009) New intercellular lipid mediators and their GPCRs: an update. Prostaglandins Other Lipid Mediat 89:53–56

    Article  PubMed  CAS  Google Scholar 

  22. Murph M, Mills GB (2007) Targeting the lipids LPA and S1P and their signalling pathways to inhibit tumour progression. Expert Rev Mol Med 9:1–18

    Article  PubMed  Google Scholar 

  23. Pua TL, Wang FQ, Fishman DA (2009) Roles of LPA in ovarian cancer development and progression. Future Oncol 5:1659–1673

    Article  PubMed  CAS  Google Scholar 

  24. Inoue M, Rashid MH, Fujita R, Contos JJA, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10:712–718

    Article  PubMed  CAS  Google Scholar 

  25. Inoue M, Ma L, Aoki J, Chun J, Ueda H (2008) Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain. Mol Pain 4:6

    Article  PubMed  Google Scholar 

  26. Inoue M, Xie W, Matsushita Y, Chun J, Aoki J, Ueda H (2008) Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 152:296–298

    Article  PubMed  CAS  Google Scholar 

  27. Okudaira S, Yukiura H, Aoki J (2010) Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 92:698–706

    Article  PubMed  CAS  Google Scholar 

  28. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, Foster CA, Zollinger M, Lynch KR (2002) The immune modulator, FTY720, targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    Article  PubMed  CAS  Google Scholar 

  29. Hammack BN, Fung KY, Hunsucker SW, Duncan MW, Burgoon MP, Owens GP, Gilden DH (2004) Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler 10:245–260

    Article  PubMed  CAS  Google Scholar 

  30. Herr DR, Chun J (2007) Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr Drug Targets 8:155–167

    Article  PubMed  CAS  Google Scholar 

  31. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat ­multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  PubMed  CAS  Google Scholar 

  32. Fechteler T, Dengler U, Schomburg D (1995) Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria. J Mol Biol 253:114–131

    Article  PubMed  CAS  Google Scholar 

  33. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  34. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  35. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 342:571–583

    Article  PubMed  CAS  Google Scholar 

  36. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  PubMed  CAS  Google Scholar 

  37. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  38. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    Article  PubMed  CAS  Google Scholar 

  39. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240

    Article  PubMed  CAS  Google Scholar 

  40. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  PubMed  CAS  Google Scholar 

  41. Pogozheva ID, Lomize AL, Mosberg HI (1997) The transmembrane 7-a-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophys J 70:1963–1985

    Article  Google Scholar 

  42. Ballesteros JA, Weinstein H (1995) Chapter 19. Integrated methods for the construction of three-dimensional models and computational probing of structure function relations in 6 protein-coupled receptors. In: Conn PM, Sealfon SC (eds) Methods in ­neurosciences. Academic, San Diego, pp 366–428

    Google Scholar 

  43. Sardar VM, Bautista DL, Fischer DJ, Yokoyama K, Nusser N, Virag T, Wang D, Baker DL, Tigyi G, Parrill AL (2002) Molecular basis for lysophosphatidic acid receptor antagonist selectivity. Biochim Biophys Acta 1582:309–317

    Article  PubMed  CAS  Google Scholar 

  44. Zhang D, Weinstein H (1994) Polarity conserved positions in transmembrane domains of G-protein coupled receptors and bacteriorhodopsin. FEBS Lett 337:207–212

    Article  PubMed  CAS  Google Scholar 

  45. Naor MM, Walker MD, Van Brocklyn JR, Tigyi G, Parrill AL (2007) Sphingosine 1-phosphate pKa and binding constants: intramolecular and intermolecular influences. J Mol Graph Model 26:519–528

    Article  PubMed  CAS  Google Scholar 

  46. Ye S, Zaitseva E, Caltabiano G, Schertler GF, Sakmar TP, Deupi X, Vogel R (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386–1389

    Article  PubMed  CAS  Google Scholar 

  47. Ye S, Huber T, Vogel R, Sakmar TP (2009) FTIR analysis of GPCR activation using azido probes. Nat Chem Biol 5:397–399

    Article  PubMed  CAS  Google Scholar 

  48. Ulfers AL, McMurry JL, Kendall DA, Mierke DF (2002) Structure of the third intracellular loop of the human cannabinoid 1 receptor. Biochemistry 41(38):11344–11350

    Article  PubMed  CAS  Google Scholar 

  49. Ulfers AL, McMurry JL, Miller A, Wang L, Kendall DA, Mierke DF (2002) Cannabinoid receptor-G protein interactions: G(alphai1)-bound structures of IC3 and a mutant with altered G protein specificity. Protein Sci 11:2526–2531

    Article  PubMed  CAS  Google Scholar 

  50. Pham TT, Kriwacki RW, Parrill AL (2007) Peptide design and structural characterization of a GPCR loop mimetic. Biopolymers 86:298–310

    Article  PubMed  CAS  Google Scholar 

  51. Muegge I, Rarey M (2001) Small molecule docking and scoring. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New York

    Google Scholar 

  52. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci U S A 99:5982–5987

    Article  PubMed  CAS  Google Scholar 

  53. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  PubMed  CAS  Google Scholar 

  54. Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188

    Article  PubMed  CAS  Google Scholar 

  55. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A 103:16123–16128

    Article  PubMed  CAS  Google Scholar 

  56. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  PubMed  CAS  Google Scholar 

  57. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    Article  PubMed  CAS  Google Scholar 

  58. Shimamura T, Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, Miyano M (2008) Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 283:17753–17756

    Article  PubMed  CAS  Google Scholar 

  59. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  60. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905

    Article  PubMed  CAS  Google Scholar 

  61. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed  CAS  Google Scholar 

  62. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  PubMed  CAS  Google Scholar 

  63. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  PubMed  CAS  Google Scholar 

  64. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  65. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5, Unit 5.6

    Google Scholar 

  66. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018

    Article  PubMed  CAS  Google Scholar 

  67. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant HL 084007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abby L. Parrill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Parrill, A.L. (2012). Comparative Modeling of Lipid Receptors. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics