Skip to main content

Introduction to QM/MM Simulations

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have become a popular tool for investigating chemical reactions in condensed phases. In QM/MM methods, the region of the system in which the chemical process takes place is treated at an appropriate level of quantum chemistry theory, while the remainder is described by a molecular mechanics force field. Within this approach, chemical reactivity can be studied in large systems, such as enzymes. In the first part of this contribution, the basic methodology is briefly reviewed. The two most common approaches for partitioning the two subsystems are presented, followed by a discussion on the different ways of treating interactions between the subsystems. Special attention is given on how to deal with situations in which the boundary between the QM and MM subsystems runs through one or more chemical bonds. The second part of this contribution discusses what properties of larger system can be obtained within the QM/MM framework and how. Finally, as an example of a QM/MM application in practice, the third part presents an overview of recent QM/MM molecular dynamics simulations on photobiological systems. In addition to providing quantities that are experimentally accessible, such as structural intermediates, fluorescence lifetimes, quantum yields and spectra, the QM/MM simulations also provide information that is much more difficult to measure experimentally, such as reaction mechanisms and the influence of individual amino acid residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen F (2001) Introduction to computational chemistry. Wiley, New York

    Google Scholar 

  2. Berendsen HJC (2001) Bio-molecular dynamics comes of age. Science 271:954–955

    Article  Google Scholar 

  3. McCammon JA, Gelin BR, Karplus M, Wolynes PG (1976) Hinge-bending mode in lysozyme. Nature 262:325–326

    Article  PubMed  CAS  Google Scholar 

  4. Shaw D, Maragakis P, Lindorff-Larsen K, Piana S, Dror R, Eastwood M, Bank J, Jumper J, Salmon J, Shan Y, Wriggers W, (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  PubMed  CAS  Google Scholar 

  5. Warshel A, Levitt M (1976) Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  PubMed  CAS  Google Scholar 

  6. Maseras F, Morokuma K (1995) IMOMM—a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  7. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  8. Bayly C, Cieplak P, Cornell W, Kollman P (1993) A well-behaved electrostatic potential bsed method using charge restraints for deriving atomic charges—the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  9. Besler B, Merz K, Kollman P (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  10. Szabo A, Ostlund NS (1989) Modern quantum chemistry. Dover Publications, New York

    Google Scholar 

  11. Field MJ, Bash PA, Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J Comp Chem 11:700–733

    Article  CAS  Google Scholar 

  12. Brooks B, Karplus M (1983) Harmonic dynamics of proteins—normal-modes and fluctuations in bovine pancreatic trypsin-inhibitor. Proc Natl Acad Sci USA 80:6571–6575

    Article  PubMed  CAS  Google Scholar 

  13. Dewar M (1983) Development and status of MINDO/3 and MNDO. J Mol Struct 100:41–50

    Article  CAS  Google Scholar 

  14. Amara P, Field MJ (2003) Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method. Theor Chem Acc 109:43–52

    Article  CAS  Google Scholar 

  15. Lamoureux G, Roux B (2003) Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119:3025–3039

    Article  CAS  Google Scholar 

  16. Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235

    Article  PubMed  CAS  Google Scholar 

  17. Rappe AK, Goddard III WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    Article  CAS  Google Scholar 

  18. Zhang Y, Lin H, Truhlar D (2007) Self-consistent polarization of the boundary in the redistributed charge and dipole scheme for combined quantum-mechanical and molecular-mechanical calculations. J Chem Theory Comput 3:1378–1398

    Article  Google Scholar 

  19. Hillier I (1999) Chemical reactivity studied by hybrid QM/MM methods. J Mol Struct (Theochem) 463:45–52

    Article  CAS  Google Scholar 

  20. Assfeld X, Rivail J (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263:100–106

    Article  CAS  Google Scholar 

  21. Gao J, Amara P, Alhambra C, Field M (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102:4714–4721

    Article  CAS  Google Scholar 

  22. Philipp DM, Friesner RA (1999) Mixed ab initio QM/MM modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. J Comput Chem 20:1468–1494

    Article  CAS  Google Scholar 

  23. Nicoll R, Hindle S, MacKenzie G, Hillier I, Burton N (2001) Quantum mechanical/molecular mechanical methods and the study of kinetic isotope effects: modelling the covalent junction region and application to the enzyme xylose isomerase. Theor Chem Acc 106:105–112, 10th International Congress of Quantum Chemistry, Nice, France, June 13–15, 2000

    Google Scholar 

  24. Rodriguez A, Oliva C, Gonzalez M, van der Kamp M, Mulholland A, (2007) Comparison of different quantum mechanical/molecular mechanics boundary treatments in the reaction of the hepatitis C virus NS3 protease with the NS5A/5B substrate. J Phys Chem B 111:12909–12915

    Article  PubMed  CAS  Google Scholar 

  25. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) The development and use of quantum-mechanical molecular models AM1—a new general-purpose quantum-mechanical molecular-model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  26. Stewart JJP (1989) Optimization of parameters for semiempirical methods. 1. Method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  27. Stewart JJP (1989) Optimization of parameters for semiempirical methods. 2. Applications. J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  28. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  29. Klahn M, Braun-Sand S, Rosta E, Warshel A (2005) On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J Phys Chem B 109:15645–15650

    Article  PubMed  Google Scholar 

  30. Torrie GM, Valle JP (1977) Non-physical sampling distributions in Monte-Carlo free energy estimation—umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  31. Roux B (1995) The calculation of the potential of mean force using computer-simulations. Comp Phys Comm 91:275–282

    Article  CAS  Google Scholar 

  32. Kirkwood J (1935) Statistical Mechanics of Fluid Mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  33. Zwanzig R (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426

    CAS  Google Scholar 

  34. Muller R, Warshel A (1995) Ab-initio calculations of free energy barriers for chemical-reactions in solution. J Phys Chem 99:17516–17524

    Article  CAS  Google Scholar 

  35. Roos BO (1999) Theoretical studies of electronically excited states of molecular systems using multiconfigurational perturbation theory. Acc Chem Res 32:137–144

    Article  CAS  Google Scholar 

  36. Schäfer LV, Groenhof G, Klingen AR, Ullmann GM, Boggio-Pasqua M, Robb MA, Grubmüller H (2007) Photoswitching of the fluorescent protein asFP595: mechanism proton pathways, and absorption spectra. Angew Chemie Int Ed 46:530–536

    Article  Google Scholar 

  37. Kaminski S, Gaus M, Phatak P, von Stetten D, Elstner M, Mroginski M (2010) Vibrational Raman spectra from the self-consistent charge density functional tight binding method via classical time-correlation functions. J Chem Theory Comput 6:1240–1255

    Article  CAS  Google Scholar 

  38. Hellingwerf KJ, Hendriks J, Gensch T (2003) Photoactive yellow protein, a new type of photoreceptor protein: will this “yellow lab” bring us where we want to go? J Phys Chem A 107:1082–1094

    Article  CAS  Google Scholar 

  39. Boggio-Pasqua M, Robb M, Groenhof G (2009) Hydrogen bonding controls excited-state decay of the photoactive yellow protein chromophore. J Am Chem Soc 131:13580

    Article  PubMed  CAS  Google Scholar 

  40. Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  41. Gromov EV, Burghardt I, Hynes JT, Köppel H, Cederbaum LS (2007) Electronic structure of the photoactive yellow protein chromophore: ab initio study of the low-lying excited singlet states. J Photochem Photobiol A 190:241–257

    Article  CAS  Google Scholar 

  42. Groenhof G, Bouxin-Cademartory M, Hess B, De Visser, S., Berendsen H, Olivucci M, Mark A, Robb M (2004) Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis lsomerization of the chromophore in the protein. J Am Chem Soc 126:4228–4233

    Article  PubMed  CAS  Google Scholar 

  43. Mataga N, Chosrowjan H, Shibata Y, Imamoto Y, Tokunaga F (2000) Effects of modification of protein nanospace structure and change of temperature on the femtosecond to picosecond fluorescence dynamics of photoactive yellow protein. J Phys Chem B 104:5191–5199

    Article  CAS  Google Scholar 

  44. Shimizu N, Kamikubo H, Yamazaki Y, Imamoto Y, kataoka M (2006) The crystal structure of the R52Q mutant demonstrates a role for R52 in chromophore pK(a) regulation in photoactive yellow protein. Biochemistry 45:3542–3547

    Google Scholar 

  45. Changenet-Barret P, Plaza P, Martin MM, Chosrowjan H, Taniguchi S, Mataga N, Imamoto Y, Kataoka M (2007) Role of arginine 52 on the primary photoinduced events in the PYP photocycle. Chem Phys Lett 434:320–325

    Article  CAS  Google Scholar 

  46. Takeshita K, Imamoto Y, Kataoka M, Mihara K, Tokunaga F, Terazima M (2002) Structural change of site-directed mutants of PYP: new dynamics during pR state. Biophys J 83:1567–1577

    Article  PubMed  CAS  Google Scholar 

  47. Groenhof G, Schäfer LV, Boggio-Pasqua M, Grubmüller H, Robb MA (2008) Arginine 52 controls photoisomerization in photoactive yellow protein. J Am Chem Soc in press JACS 130: 3250–3251

    Google Scholar 

  48. Groenhof G, Lensink MF, Berendsen HJC, Mark AE (2002) Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes. Proteins 48:212–219

    CAS  Google Scholar 

  49. Gao J (1996) Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc Chem Res 29:298–305

    Article  CAS  Google Scholar 

  50. Monard G, Merz K (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32:904–911

    Article  CAS  Google Scholar 

  51. Gao J, Truhlar D (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505

    Article  PubMed  CAS  Google Scholar 

  52. Friesner R, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 56:389–427

    Article  PubMed  CAS  Google Scholar 

  53. Senn H, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Volkswagenstiftung and Deutsche Forschungsgemeinschaft (SFB755) are acknowledged for their financial support. I am grateful to Dr. Mehdi Davari and Pedro Valiente for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Groenhof, G. (2013). Introduction to QM/MM Simulations. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics