Skip to main content

Vesicles and Vesicle Fusion: Coarse-Grained Simulations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and from, fusing with, and budding from, other membranes. A feature of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active compounds inside vesicles delays their clearance from the blood stream. In this chapter, we survey the biological role and physicochemical properties of phospholipids, and describe progress in coarse-grained simulations of vesicles and vesicle fusion. Because coarse-grained simulations retain only those molecular details that are thought to influence the large-scale processes of interest, they act as a model embodying our current understanding. Comparing the predictions of these models with experiments reveals the importance of the retained microscopic details and also the deficiencies that can suggest missing details, thereby furthering our understanding of the complex dynamic world of vesicles.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland Publishing, New York

    Google Scholar 

  2. Israelachvili J (1992) Intermolecular and surface forces, 2nd edn. Academic, press London

    Google Scholar 

  3. Jahn R, Grubmuller H (2002) Membrane fusion. Curr Op Cell Biol 14:488–495

    Article  PubMed  CAS  Google Scholar 

  4. Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  CAS  Google Scholar 

  5. Jones RAL (2002) Soft condensed matter. Oxford University Press, Oxford, UK

    Google Scholar 

  6. Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nat Mol Cell Biol 2:504–513

    Article  CAS  Google Scholar 

  7. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Mol Cell Biol 1:31–39

    Article  CAS  Google Scholar 

  8. Thompson MP, Chien M-P, Ku T-H, Rush AM, Gianneschi NC (2010) Smart lipids for programmable nanomaterials. Nanoletters 10:2690–2693

    Article  CAS  Google Scholar 

  9. Hadorn M, Hotz PE (2010) DNA-mediated self-assembly of artificial vesicles. PLoS One 5:e9886

    Article  PubMed  CAS  Google Scholar 

  10. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–629

    Article  PubMed  CAS  Google Scholar 

  11. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  PubMed  CAS  Google Scholar 

  12. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  PubMed  CAS  Google Scholar 

  13. Mailänder V, Landfester K (2009) Interaction of nanoparicles with cells. Biomacromolecules 10:2379–2400

    Article  PubMed  CAS  Google Scholar 

  14. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23

    Article  PubMed  CAS  Google Scholar 

  15. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  16. Heimburg T (2009) Membrane biophysics. Soft Matter 5:3129–3364

    Article  Google Scholar 

  17. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  18. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  PubMed  CAS  Google Scholar 

  19. Castorph S, Riedel D, Arleth L, Sztucki M, Jahn R, Holt M, Salditt T (2010) Structure parameters of synaptic vesicles quantified by small-angle X-ray scattering. Biophys J 98:1200–1208

    Article  PubMed  CAS  Google Scholar 

  20. Rosoff M (1996) Vesicles. Surfactant science series. Marcel Dekker, New York

    Google Scholar 

  21. Döbereiner H-G (2000) Fluctuating vesicle shapes. In: Luisi PL, Walde P (eds) Giant vesicles. John Wiley and Sons Ltd, New York

    Google Scholar 

  22. Evans E, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    Article  PubMed  CAS  Google Scholar 

  23. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    Article  PubMed  CAS  Google Scholar 

  24. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–81

    Article  PubMed  CAS  Google Scholar 

  25. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforschung c 28:693–703

    CAS  Google Scholar 

  26. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137

    Article  CAS  Google Scholar 

  27. Seifert U, Shillcock J, Nelson P (1996) Role of bilayer tilt difference in equilibrium membrane shapes. Phys Rev Lett 77:5237–5240

    Article  PubMed  CAS  Google Scholar 

  28. Gompper G, Kroll DM (1997) Network models of fluid, hexatic and polymerized membranes. J Phys Condens Matter 9:8795–8834

    Article  CAS  Google Scholar 

  29. Noguchi H (2009) Membrane simulation models from nanometer to micrometer scale. J Phys Soc Japan 78:041007-1–041007-9

    Google Scholar 

  30. Jülicher F, Lipowsky R (1993) Domain-induced budding of vesicles. Phys Rev Lett 70:2964–2967

    Article  PubMed  Google Scholar 

  31. Seifert U (1993) Curvature-induced lateral phase segregation in two-component vesicles. Phys Rev Lett 70:1335–1338

    Article  PubMed  CAS  Google Scholar 

  32. Taniguchi T (1996) Shape deformation and phase separation dynamics of two-component vesicles. Phys Rev Lett 76:4444–4447

    Article  PubMed  CAS  Google Scholar 

  33. Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2010) Monte Carlo simulations of fluid vesicles with in plane orientational ordering. Phys Rev E 81:041922-1–041922-9

    Article  CAS  Google Scholar 

  34. Gruner SM (1989) Stability of lyotropic phases with curved interfaces. J Phys Chem 93:7562–7570

    Article  CAS  Google Scholar 

  35. Jones RAL (2004) Soft Machines Nanotechnology and Life. Oxford University Press, Oxford, UK

    Google Scholar 

  36. Arkhipov A, Yin Y, Schulten K (2008) Four-scale description of membrane sculpting by BAR domains. Biophys J 95:2806–2821

    Article  PubMed  CAS  Google Scholar 

  37. Campelo F, Fabrikant G, McMahon HT, Kozlov MM (2009) Modeling membrane shaping by proteins: focus on EHD2 and N-BAR domains. FEBS Lett 584:1830–1839

    Article  PubMed  CAS  Google Scholar 

  38. Shillcock JC (2008) Insight or illusion? seeing inside the cell with mesoscopic simulations. HFSP J 2:1–6

    Article  PubMed  Google Scholar 

  39. Ayton G, Smondyrev AM, Bardenhagen SG, McMurtry P, Voth GA (2002) Interfacing molecular dynamics and macro-scale simulations for lipid bilayer vesicles. Biophys J 83:1026–1038

    Article  PubMed  CAS  Google Scholar 

  40. Delgado-Buscalioni R, Kremer K, Prapotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128:114110-1–114110-9

    Article  CAS  Google Scholar 

  41. Ayton GS, Voth GA (2009) Hybrid coarse-graining approach for lipid bilayers at large length and time scales. J Phys Chem B 113:4413–4424

    Article  PubMed  CAS  Google Scholar 

  42. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  43. Murtola T, Bunker A, Vattulainen IV, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892

    Article  PubMed  CAS  Google Scholar 

  44. Bennun SV, Hoopes MI, Xing C, Faller R (2009) Coarse-grained modeling of lipids. Chem Phys Lipids 159:59–66

    Article  PubMed  CAS  Google Scholar 

  45. Berendsen HJC (2009) Concluding remarks. Faraday Discuss 144:467–481

    Article  CAS  Google Scholar 

  46. Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks, and curves. Biochim Biophys Acta 1788:149–168

    Article  PubMed  CAS  Google Scholar 

  47. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108:7397–7409

    Article  CAS  Google Scholar 

  48. Wu R, Deng M, Kong B, Yang X (2009) Coarse-grained molecular dynamics simulation of ammonium surfactant self-assemblies: micelles and vesicles. J Phys Chem B 113:15010–15016

    Article  PubMed  CAS  Google Scholar 

  49. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse-grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  50. Markvoort AJ, Smeijers AF, Pieterse K, van Santen RA, Hilbers PAJ (2007) Lipid-based mechanisms for vesicle fission. J Phys Chem B 111:5719–5725

    Article  PubMed  CAS  Google Scholar 

  51. Noguchi H, Takasu M (2001) Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys Rev E 64:041913-1–041913-7

    Article  CAS  Google Scholar 

  52. Farago O (2003) “Water-free” computer model for fluid bilayer membranes. J Chem Phys 119:596–605

    Article  CAS  Google Scholar 

  53. Brannigan G, Brown FLH (2004) Solvent-free simulations of fluid membrane bilayers. J Chem Phys 120:1059–1071

    Article  PubMed  CAS  Google Scholar 

  54. Cooke IR, Kremer K, Deserno M (2005) Tunable generic model for fluid bilayer membranes. Phys Rev E 72:011506-1–011506-4

    Article  CAS  Google Scholar 

  55. Wang Z-J, Deserno M (2010) A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulations. J Phys Chem B 114:11207–11220

    Article  PubMed  CAS  Google Scholar 

  56. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with Dissipative Particle Dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  57. Espagñol P, Warren PB (1995) Statistical properties of Dissipative Particle Dynamics. Europhys Lett 30:191–196

    Article  Google Scholar 

  58. Groot RD, Warren PB (1997) Dissipative Particle Dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Article  CAS  Google Scholar 

  59. Venturoli M, Smit B (1999) Simulating the self-assembly of model membranes. Phys Chem Commun 10:1–10

    Google Scholar 

  60. Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from Dissipative Particle Dynamics simulations. J Chem Phys 117:5048–5061

    Article  CAS  Google Scholar 

  61. Shillcock JC, Lipowsky R (2006) The computational route from bilayer membranes to vesicle fusion. J Phys Condens Matter 18:S1191–S1219

    Article  PubMed  CAS  Google Scholar 

  62. Schmid F (2009) Toy amphiphiles on the computer: what can we learn from generic models? Macromol Rapid Commun 30:741–751

    Article  PubMed  CAS  Google Scholar 

  63. Venturoli M, Sperotto MM, Kranenburg M, Smit B (2006) Mesoscopic models of biological membranes. Physics Reports 437:1–54

    Article  CAS  Google Scholar 

  64. Müller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Physics Reports 434:113–176

    Article  CAS  Google Scholar 

  65. Füchslin RM, Maeke T, McCaskill JS (2009) Spatially resolved simulations of membrane reactions and dynamics: multipolar reaction DPD. Eur Phys J E 29:431–448

    Article  PubMed  CAS  Google Scholar 

  66. Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P (2000) The middle way. PNAS 97:32–37

    Article  PubMed  CAS  Google Scholar 

  67. Lipowsky R, Leibler S (1986) Unbinding transitions of interacting membranes. Phys Rev Lett 56:2541–2544

    Article  PubMed  CAS  Google Scholar 

  68. Safinya CR, Roux D, Smith GS, Sinha SK, Dimon P, Clark NA, Bellocq AM (1986) Steric interactions in a model multimembrane system: a synchrotron X-ray study. Phys Rev Lett 57:2718–2721

    Article  PubMed  CAS  Google Scholar 

  69. Jakobsen AF, Mouritsen OG, Besold G (2005) Artifacts in dynamical simulations of coarse-grained lipid bilayers. J Chem Phys 122:204901-1–204901-11

    Google Scholar 

  70. Allen MP (2006) Configurational temperature in membrane simulations using dissipative particle Dynamics. J Phys Chem B 110:3823–3830

    Article  PubMed  CAS  Google Scholar 

  71. Larson RG (1989) Self-assembly of surfactant liquid crystalline phases by Monte Carlo simulation J Chem Phys 91:2479–2488

    CAS  Google Scholar 

  72. Drouffe J-M, Maggs AC, Leibler S (1991) Computer simulations of self-assembled membranes. Science 254:1353–1356

    Article  PubMed  CAS  Google Scholar 

  73. Smit B, Hilbers PAJ, Esselink K, Rupert LAM, van Os NM, Schlijper AG (1990) Computer simulations of a water/oil interface in the presences of micelles. Nature 348:624–625

    Article  CAS  Google Scholar 

  74. Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B 104:6380–6388

    Article  CAS  Google Scholar 

  75. Marrink SJ, Lindahl E, Edholm O, Mark AE (2001) Simulation of the spontaneous aggregation of phospholipids into bilayers. JACS 123:8638–8639

    Article  CAS  Google Scholar 

  76. Nielsen M, Miao L, Ipsen JH, Zuckermann MJ, Mouritsen OG (1999) Off-lattice model for the phase behavior of lipid-cholesterol bilayers. Phys Rev E 59:5790–5803

    Article  CAS  Google Scholar 

  77. Marrink SJ, Mark AE (2003) Molecular dynamics simulation of the formation, structure and dynamics of small phospholipid vesicles. JACS 125:15233–15242

    Article  CAS  Google Scholar 

  78. de Vries AH, Mark AM, Marrink SJ (2004) Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. JACS 126:4488–4489

    Article  CAS  Google Scholar 

  79. Risselada HJ, Mark AE, Marrink SJ (2008) Application of mean field boundary potentials in simulations of lipid vesicles. J Phys Chem B 112:7438–7447

    Article  PubMed  CAS  Google Scholar 

  80. Bernardes AT (1996) Computer simulations of spontaneous vesicle formation. Langmuir 12:5763–5767

    Article  CAS  Google Scholar 

  81. Huang J, Wang Y, Qian C (2009) Simulation study on the formation of vesicle and influence of solvent. J Chem Phys 131:234902-1–234902-5

    Google Scholar 

  82. Sevink GJA, Zvelindovsky AV (2005) Self-assembly of complex vesicles. Macromolecules 38:7502–7513

    Article  CAS  Google Scholar 

  83. He X, Schmid F (2006) Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers. Macromolecules 39:2654–2662

    Article  CAS  Google Scholar 

  84. Pogodin S, Baulin VA (2010) Coarse-grained models of biological membranes within the single chain mean field theory. Soft Matter 6:1–12

    Article  Google Scholar 

  85. Yamamoto S, Maruyama Y, Hyodo S (2002) Dissipative Particle Dynamics study of spontaneous vesicle formation of amphiphilic molecules. J Chem Phys 116:5842–5849

    Article  CAS  Google Scholar 

  86. Grafmüller A, Shillcock J, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from Dissipative Particle Dynamics. Biophys J 96:2658–2675

    Article  PubMed  CAS  Google Scholar 

  87. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  PubMed  CAS  Google Scholar 

  88. Yu S, Azzam T, Rouiller I, Eisenberg A (2009) Breathing vesicles. JACS 131:10557–10566

    Article  CAS  Google Scholar 

  89. Ortiz V, Nielsen SO, Discher DE, Klein ML, Lipowsky R, Shillcock J (2005) Dissipative Particle Dynamics simulations of polymersomes. J Phys Chem B 109:17708–17714

    Article  PubMed  CAS  Google Scholar 

  90. Srinivas G, Discher DE, Klein ML (2004) Self-assembly and properties of diblock copolymers by coarse-grained molecular dynamics. Nat Mater 3:638–644

    Article  PubMed  CAS  Google Scholar 

  91. Meleard P, Gerbeaud C, Pott T, Fernandez-Puente L, Bivas I, Mitov MD, Dufourcq J, Bothore P (1997) Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J 72:2616–2629

    Article  PubMed  CAS  Google Scholar 

  92. Illya G, Lipowsky R, Shillcock JC (2005) Effect of chain length and asymmetry on material properties of bilayer membranes. J Chem Phys 122:244901-1–224901-6

    Article  CAS  Google Scholar 

  93. Schofield P, Henderson JR (1982) Statistical mechanics of inhomogeneous fluids. Proc R Soc London A 379:231–246

    Article  Google Scholar 

  94. Templer RH, Castle SJ, Curran AR, Rumbles G, Klug DR (1998) Seeing isothermal changes in the lateral pressure in model membanes using di-pyrenyl phosphatidylcholine. Faraday Disc 111:41–53

    Article  CAS  Google Scholar 

  95. Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    Article  PubMed  CAS  Google Scholar 

  96. Cantor RS (2001) Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Biophys J 80:2284–2297

    Article  PubMed  CAS  Google Scholar 

  97. Sonne J, Hansen FY, Peters GH (2005) Methodological problems in pressure profile calculations for lipid bilayers. J Chem Phys 122:124903-1–124903-9

    Article  CAS  Google Scholar 

  98. Cantor RS (2002) Size distribution of barrel-stave aggregates of membrane peptides: influence of the bilayer lateral pressure profile. Biophys J 82:2520–2525

    Article  PubMed  CAS  Google Scholar 

  99. Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from Molecular Dynamics simulations. J Chem Phys 113:3882–3893

    Article  CAS  Google Scholar 

  100. Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509

    Article  PubMed  CAS  Google Scholar 

  101. Ollila OHS, Risselada HJ, Louhivuori M, Lindahl E, Vattulainen I, Marrink SJ (2009) 3D pressure field in lipid membranes and membrane-protein complexes. Phys Rev Lett 102:078101-1–078101-4

    Article  CAS  Google Scholar 

  102. Jørgensen K, Mouritsen OG (1995) Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J 69:942–954

    Article  PubMed  Google Scholar 

  103. Wu SH, McConnell HM (1975) Phase separations in phospholipid membranes. Biochemistry 14:847–854

    Article  CAS  Google Scholar 

  104. Wilkinson DA, Nagle JF (1979) Dilatometric study of binary mixtures of phosphatidylcholines. Biochemistry 18:4244–4249

    Article  PubMed  CAS  Google Scholar 

  105. Bagatolli LA, Gratton E (2000) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 79:434–447

    Article  PubMed  CAS  Google Scholar 

  106. Illya G, Lipowsky R, Shillcock JC (2006) Two-component membrane material properties and domain formation from Dissipative Particle Dynamics. J Chem Phys 125:114710-1–114710-9

    Article  CAS  Google Scholar 

  107. Yamamoto S, Hyodo S (2003) Budding and fission dynamics of two-component vesicles. J Chem Phys 118:7937–7943

    Article  CAS  Google Scholar 

  108. Laradji M, Sunil Kumar PB (2005) Domain growth, budding, and fission in phase-separating self-assembled fluid bilayers. J Chem Phys 123:224902-1–224902-10

    Article  CAS  Google Scholar 

  109. Venturoli M, Smit B, Sperotto MM (2005) Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 88:1778–1798

    Article  PubMed  CAS  Google Scholar 

  110. Schmidt U, Guigas G, Weiss M (2008) Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys Rev Lett 101:128104-1–128104-4

    Google Scholar 

  111. Li L, Davande H, Bedrov D, Smith GD (2007) A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer. J Phys Chem B 111:4067–4072

    Article  PubMed  CAS  Google Scholar 

  112. Monticelli L, Salonen E, Ke PC, Vattulainen I (2009) Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5:4433–4445

    Article  CAS  Google Scholar 

  113. Wong-Ekkabut J, Baoukina S, Triampo W, Tang I-M, Tieleman DP, Monticelli L (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363–368

    Article  PubMed  CAS  Google Scholar 

  114. Chiu CC, deVane R, Klein ML, Shinoda W, Moore PB, Nielsen SO (2010) Coarse-grained potential models for phenyl-based molecules: II. application to fullerenes. J Phys Chem B 114:6394–6400

    Article  PubMed  CAS  Google Scholar 

  115. Smith KA, Jasnow D, Balazs AC (2007) Designing synthetic vesicles that engulf nanoscopic particles. J Chem Phys 127:084703-1–084703-10

    Google Scholar 

  116. Yang K, Ma Y-Q (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nantechnology 5:579–583

    Article  CAS  Google Scholar 

  117. Graham TR, Kozlov MM (2010) Interplay of proteins and lipids in generating membrane curvature. Curr Op Cell Biology 22:430–436

    Article  CAS  Google Scholar 

  118. Wu S, Guo H (2009) Simulation study of protein-mediated vesicle fusion. J Phys Chem B 113:589–591

    Article  PubMed  CAS  Google Scholar 

  119. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464

    Article  PubMed  CAS  Google Scholar 

  120. Chanturiya A, Chernomordik LV, Zimmerberg J (1997) Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. PNAS 94:14423–14428

    Article  PubMed  CAS  Google Scholar 

  121. Lentz BR, Lee J (1999) Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membrane Biol 16:279–296

    Article  CAS  Google Scholar 

  122. Safran SA, Kuhl TL, Israelachvili JN (2001) Polymer-induced membrane contraction, phase separation, and fusion via Marangoni flow. Biophys J 81:659–666

    Article  PubMed  CAS  Google Scholar 

  123. Bentz J, Alford D, Cohen J, Düzgünes N (1988) La3+ induced fusion of phosphatidylserine liposomes. Biophys J 53:593–607

    Article  PubMed  CAS  Google Scholar 

  124. Haluska CK, Riske KA, Marchi-Artzner V, Lehn J-M, Lipowsky R, Dimova R (2006) Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. PNAS 103:15841–15846

    Article  PubMed  CAS  Google Scholar 

  125. Sunami T, Caschera F, Morita Y, Toyota T, Nishimura K, Matsuura T, Suzuki H, Hanczyc MM, Yomo T (2010) Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. Langmuir. 26:15098–15103

    Google Scholar 

  126. Dimova R, Bezlyepkina N, Jordö MD, Knorr RL, Riske KA, Staykova M, Vlahovska PM, Yamamoto T, Yang P, Lipowsky R (2009) Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5:3201–3212

    Article  CAS  Google Scholar 

  127. Hu C, Ahmed M, Melia TJ, Söllner TH, Mayer T, Rothman JE (2003) Fusion of cells by flipped SNAREs. Science 300:1745–1748

    Article  PubMed  CAS  Google Scholar 

  128. Yang L, Huang HW (2002) Observation of a membrane fusion intermediate structure. Science 297:1877–1879

    Article  PubMed  CAS  Google Scholar 

  129. McNew JA (2008) Regulation of SNARE-mediated membrane fusion during exocytosis. Chem Rev 108:1669–1686

    Article  PubMed  CAS  Google Scholar 

  130. Thorley JA, McKeating JA, Rappoport JZ (2010) Mechanisms of viral entry: sneaking in the front door. Protoplasma 244:15–24

    Article  PubMed  CAS  Google Scholar 

  131. St. Vincent MR, Colpitts CC, Ustinov AV, Muqadas M, Joyce MA, Barsby NL, Epand RF, Epand RM, Khramyshev SA, Valueva OA, Korshun VA, Tyrrell DLJ, Schang LM (2010) Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. PNAS 107:17339–17344

    Article  Google Scholar 

  132. Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  133. Yang Y, Kurteva S, Ren X, Lee S, Sodroski J (2005) Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J of Virology 79:12132–12147

    Article  CAS  Google Scholar 

  134. Mohrmann R, de Wit H, Verhage M, Neher E, Sørensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505

    Google Scholar 

  135. Tamm LK, Crane J, Kiessling V (2003) Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Op Struct Biol 13:453–466

    Article  CAS  Google Scholar 

  136. Chernomordik LV, Zimmerberg J, Kozlov MM (2006) Membranes of the world unite. J Cell Biology 175:201–207

    Article  CAS  Google Scholar 

  137. Lindau M, de Toledo GA (2003) The fusion pore. Biochim Biophys Acta 1641:167–173

    Article  PubMed  CAS  Google Scholar 

  138. Han X, Wang C-T, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292

    Article  PubMed  CAS  Google Scholar 

  139. Szule JA, Coorssen JR (2004) Comment on Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 306:813b

    Article  Google Scholar 

  140. Han X, Jackson MB (2004) Response to comment on Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 306:813c

    Article  Google Scholar 

  141. Carr CM, Rizo J (2010) At the junction of SNARE and SM protein function. Curr Op Cell Biol 22:488–495

    Article  PubMed  CAS  Google Scholar 

  142. Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Chen X, Backlund PS Jr, Zimmerberg J (2003) Regulared secretion: SNARE density, vesicle fusion and calcium dependence. J Cell Science 116:2087–2096

    Article  PubMed  CAS  Google Scholar 

  143. Kozlov MM, Markin VS (1983) Possible mechanism of membrane fusion. Biofizika 28:243–247

    Google Scholar 

  144. Chernomordik LV, Melikyan GB, Chizmadzhev YA (1987) Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta 906:309–352

    Article  PubMed  CAS  Google Scholar 

  145. Siegel DP (1993) Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J 65:2124–2140

    Article  PubMed  CAS  Google Scholar 

  146. Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82:882–895

    Article  PubMed  CAS  Google Scholar 

  147. Markin VS, Albanesi JP (2002) Membrane fusion: stalk model revisited. Biophys J 82:693–712

    Article  PubMed  CAS  Google Scholar 

  148. Tajparast M, Glavinović MI (2009) Forces and stresses acting on fusion pore membrane during secretion. Biochim Biophys Acta 1788:1009–1023

    Article  PubMed  CAS  Google Scholar 

  149. Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382

    Article  PubMed  CAS  Google Scholar 

  150. Efrat A, Chernomordik L, Kozlov MM (2007) Point-like protrusion as a pre-stalk intermediate in membrane fusion pathway. Biophys J 92:L61–L63

    Article  PubMed  CAS  Google Scholar 

  151. Lipowsky R, Grotehans S (1993) Hydration vs protrusion forces between lipid bilayers. Europhys Lett 23:599–604

    Article  CAS  Google Scholar 

  152. Woodbury DJ (1989) Pure lipid vesicles can induce channel-like conductances in planar bilayers. J Membrane Biol 109:145–150

    Article  CAS  Google Scholar 

  153. Heimburg T (2010) Lipid ion channels. Biophys Chem 150:2–22

    Article  PubMed  CAS  Google Scholar 

  154. Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. JACS 125:11144–11145

    Article  CAS  Google Scholar 

  155. Stevens MJ, Hoh JH, Woolf TB (2003) Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. Phys Rev Lett 91:188102-1–188102-4

    Article  CAS  Google Scholar 

  156. Kasson PM, Lindahl E, Pande VS (2010) Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails. PLoS Comput Biol 6:e1000829

    Article  PubMed  CAS  Google Scholar 

  157. Smirnova YG, Marrink SJ, Lipowsky R, Knecht V (2009) Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. JACS 132:6710–6718

    Article  CAS  Google Scholar 

  158. Mirjanian D, Dickey AN, Hoh JH, Woolf TB, Stevens MJ (2010) Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion. J Phys Chem B 114:11061–11068

    Article  PubMed  CAS  Google Scholar 

  159. Noguchi H, Takasu M (2001) Fusion pathways of vesicles: a Brownian dynamics simulation. J Chem Phys 115:9547–9551

    Article  CAS  Google Scholar 

  160. Shillcock JC, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Nat Mater 4:225–228

    Article  PubMed  CAS  Google Scholar 

  161. Gao L, Lipowsky R, Shillcock JC (2008) Tension-induced vesicle fusion: pathways and pore dynamics. Soft Matter 4:1208–1214

    Article  CAS  Google Scholar 

  162. Liu Y-T, Zhao Y, Liu H, Liu Y-H, Lu Z-Y (2009) Spontaneous fusion between the vesicles formed by A2n(B2)n type comb-like block copolymers with a semiflexible hydrophobic backbone. J Phys Chem B 113:15256–15262

    Article  PubMed  CAS  Google Scholar 

  163. Li X, Liu Y, Wang L, Deng M, Liang H (2009) Fusion and fission pathways of vesicles from amphiphilic triblock copolymers: a dissipative particle dynamics simulation study. Phys Chem Chem Phys 11:4051–4059

    Article  PubMed  CAS  Google Scholar 

  164. Müller M, Katsov K, Schick M (2003) A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys J 85:1611–1623

    Article  PubMed  Google Scholar 

  165. Schick M, Katsov K, Müller M (2005) The central role of line tension in the fusion of biological membranes. Mol Phys 103:3055–3059

    Article  CAS  Google Scholar 

  166. Kinnunen PKJ (1992) Fusion of lipid bilayers: a model involving mechanistic connection to HII phase forming lipids. Chem Phys Lipids 63:251–258

    Article  PubMed  CAS  Google Scholar 

  167. Holopainen JM, Lehtonen JYA, Kinnunen PKJ (1999) Evidence for the extended phospholipid conformation in membrane fusion and hemifusion. Biophys J 76:2111–2120

    Article  PubMed  CAS  Google Scholar 

  168. Kinnunen PKJ, Holopainen JM (2000) Mechanisms of initiation of membrane fusion: role of lipids. Biosci Rep 20:465–482

    Article  PubMed  CAS  Google Scholar 

  169. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528

    PubMed  CAS  Google Scholar 

  170. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachi M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  171. Pang ZP, Südhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Op Cell Biology 22:496–505

    Article  CAS  Google Scholar 

  172. Knecht V, Grubmüller H (2003) Mechanical coupling via the membrane fusion SNARE protein Syntaxin 1A: a molecular dynamics study. Biophys J 84:1527–1547

    Article  PubMed  CAS  Google Scholar 

  173. McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ, Söllner TH, Rothman JE (2000) Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J Cell Biol 150:105–117

    Article  PubMed  CAS  Google Scholar 

  174. Yersin A, Hirling H, Steiner P, Magnin S, Regazzi R, Hüni B, Huguenot P, de Los RP, Dietler G, Catsicas S, Kasas S (2003) Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. PNAS 100:8736–8741

    Article  PubMed  CAS  Google Scholar 

  175. Abdulreda MH, Bhalla A, Rico F, Berggren P-O, Chapman ER, Moy VT (2009) Pulling force generated by interacting SNAREs facilitates membrane hemifusion. Integr Biol 1:301–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Thomas E Rasmussen for drawing the pictures shown in Figures 1, 2, 3, and 7, and to MEMPHYS for financial support. MEMPHYS is supported by the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian C. Shillcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shillcock, J.C. (2013). Vesicles and Vesicle Fusion: Coarse-Grained Simulations. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics