Skip to main content

The Martini Coarse-Grained Force Field

  • Protocol
  • First Online:
Book cover Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

The Martini force field is a coarse-grained force field suited for molecular dynamics simulations of biomolecular systems. The force field has been parameterized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. In this chapter the methodology underlying the force field is presented together with details of its parameterization and limitations. Then currently available topologies are described with a short overview of the key elements of their parameterization. These include the new polarizable Martini water model. A set of three selected ongoing studies using the Martini force field is presented. Finally the latest lines of development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smit B, Hilbers PAJ, Esselink K, Rupert LAM, Vanos NM, Schlijper AG (1990) Computer-simulations of a water oil interface in the presence of micelles. Nature 348:624–625

    Article  CAS  Google Scholar 

  2. Muller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep 434:113–176

    Article  CAS  Google Scholar 

  3. Shillcock JC, Lipowsky R (2006) The computational route from bilayer membranes to vesicle fusion. J Phys-Condens Mat 18:S1191–S1219

    Article  CAS  Google Scholar 

  4. Venturoli M, Sperotto MM, Kranenburg M, Smit B (2006) Mesoscopic models of biological membranes. Phys Rep 437:1–54

    Article  CAS  Google Scholar 

  5. Elezgaray J, Laguerre M (2006) A systematic method to derive force fields for coarse-grained simulations of phospholipids. Comput Phys Commun 175:264–268

    Article  CAS  Google Scholar 

  6. Lyubartsev AP (2005) Multiscale modeling of lipids and lipid bilayers. Eur Biophys J Biophy 35:53–61

    Article  CAS  Google Scholar 

  7. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML (2001) Simulations of phospholipids using a coarse grain model. J Phys Chem B 105:9785–9792

    Article  CAS  Google Scholar 

  8. Izvekov S, Violi A, Voth GA (2005) Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. J Phys Chem B 109:17019–17024

    Article  PubMed  CAS  Google Scholar 

  9. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  10. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  11. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  12. Chu JW, Ayton GS, Izvekov S, Voth GA (2007) Emerging methods for multiscale simulation of biomolecular systems. Mol Phys 105:167–175

    Article  CAS  Google Scholar 

  13. Baron R, Trzesniak D, de Vries AH, Elsener A, Marrink SJ, van Gunsteren WF (2007) Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. Chem Phys Chem 8:452–461

    Article  PubMed  CAS  Google Scholar 

  14. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  15. Sengupta D, Marrink SJ (2010) Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. Phys Chem Chem Phys 12:12987–12996

    Article  PubMed  CAS  Google Scholar 

  16. Periole X, Cavalli M, Marrink SJ, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543

    Article  CAS  Google Scholar 

  17. Ramadurai S, Holt A, Schafer LV, Krasnikov VV, Rijkers DTS, Marrink SJ, Killian JA, Poolman B (2010) Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys J 99:1447–1454

    Article  PubMed  CAS  Google Scholar 

  18. Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132

    Article  PubMed  CAS  Google Scholar 

  19. Marrink SJ, Mark AE (2004) Molecular view of hexagonal phase formation in phospholipid membranes. Biophys J 87:3894–3900

    Article  PubMed  CAS  Google Scholar 

  20. Marrink SJ, Risselada J, Mark AE (2005) Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem Phys Lipids 135:223–244

    Article  PubMed  CAS  Google Scholar 

  21. Faller R, Marrink SJ (2004) Simulation of domain formation in DLPC-DSPC mixed bilayers. Langmuir 20:7686–7693

    Article  PubMed  CAS  Google Scholar 

  22. Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. P Natl Acad Sci USA 105:17367–17372

    Article  CAS  Google Scholar 

  23. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  24. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  PubMed  CAS  Google Scholar 

  25. Bowers KJ, Chow E, Xu HF, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossváry I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) Tampa, Florida

    Google Scholar 

  26. Shih AY, Arkhipov A, Freddolino PL, Schulten K (2006) Coarse grained protein-lipid model with application to lipoprotein particles. J Phys Chem B 110:3674–3684

    Article  PubMed  CAS  Google Scholar 

  27. Shih AY, Freddolino PL, Arkhipov A, Schulten K (2007) Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol 157:579–592

    Article  PubMed  CAS  Google Scholar 

  28. Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593–605

    Article  PubMed  CAS  Google Scholar 

  29. Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128:2697–2704

    Article  PubMed  CAS  Google Scholar 

  30. Villa A, Mark AE (2002) Calculation of the free energy of solvation for neutral analogs of amino acid side chains. J Comput Chem 23:548–553

    Article  PubMed  CAS  Google Scholar 

  31. Yesylevskyy SO, Schafer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810

    Article  PubMed  CAS  Google Scholar 

  32. Marrink SJ, Periole X, Tieleman DP, de Vries AH (2010) Comment on “On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models” by M. Winger, D. Trzesniak, R. Baron and W. F. van Gunsteren (2009) Phys. Chem. Chem. Phys, 11: 1934, Phys Chem Chem Phys 12: 2254–2256

    Google Scholar 

  33. Xing CY, Faller R (2009) Coarse-grained simulations of supported and unsupported lipid monolayers. Soft Matter 5:4526–4530

    Article  CAS  Google Scholar 

  34. Yano Y, Matsuzaki K (2006) Measurement of thermodynamic parameters for hydrophobic mismatch 1: Self-association of a transmembrane helix. Biochem Us 45:3370–3378

    Article  CAS  Google Scholar 

  35. Ash WL (2009) Helix-helix interactions in membrane proteins probed with computer simulations. PhD Thesis (University of Calgary, Canada).

    Google Scholar 

  36. Winger M, Trzesniak D, Baron R, van Gunsteren WF (2009) On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models. Phys Chem Chem Phys 11:1934–1941

    PubMed  CAS  Google Scholar 

  37. Marrink SJ, de Vries AH, Harroun TA, Katsaras J, Wassall SR (2008) Cholesterol shows preference for the interior of polyunsaturated lipid. J Am Chem Soc 130:10–11

    Article  PubMed  CAS  Google Scholar 

  38. Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP (2009) Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J Am Chem Soc 131:12714–12720

    Article  PubMed  CAS  Google Scholar 

  39. Dahlberg M (2007) Polymorphic phase behavior of cardiolipin derivatives studied by coarse-grained molecular dynamics. J Phys Chem B 111:7194–7200

    Article  PubMed  CAS  Google Scholar 

  40. Vuorela T, Catte A, Niemela PS, Hall A, Hyvonen MT, Marrink SJ, Karttunen M, Vattulainen I (2010) Role of lipids in spheroidal high density lipoproteins. PLoS Comput Biol 6:e1000964

    Article  PubMed  CAS  Google Scholar 

  41. Bulacu M, Periole X, Marrink SJ. (2012) In-silico design of robust bolalipid membranes. Biomacromol 13:196–205

    Google Scholar 

  42. Lopez CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hunenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210

    Article  CAS  Google Scholar 

  43. Wu Z, Cui QA, Yethiraj A (2010) A New coarse-grained model for water: the importance of electrostatic interactions. J Phys Chem B 114:10524–10529

    Article  PubMed  CAS  Google Scholar 

  44. Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161

    Article  PubMed  CAS  Google Scholar 

  45. Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. BBA-Biomembranes 1778:2308–2317

    Article  PubMed  CAS  Google Scholar 

  46. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363–368

    Article  PubMed  CAS  Google Scholar 

  47. Wallace EJ, Sansom MSP (2009) Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study. Nanotechnology 20:045101

    Article  PubMed  CAS  Google Scholar 

  48. Wallace EJ, Sansom MSP (2007) Carbon nanotube/detergent interactions via coarse-grained molecular dynamics. Nano Lett 7:1923–1928

    Article  PubMed  CAS  Google Scholar 

  49. Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: A simulation study. Nano Lett 8:2751–2756

    Article  PubMed  CAS  Google Scholar 

  50. Gautieri A, Russo A, Vesentini S, Redaelli A, Buehler MJ (2010) Coarse-grained model of collagen molecules using an extended MARTINI force field. J Chem Theory Comput 6:1210–1218

    Article  CAS  Google Scholar 

  51. Khalid S, Bond PJ, Holyoake J, Hawtin RW, Sansom MSP (2008) DNA and lipid bilayers: self-assembly and insertion. J R Soc Interface 5:S241–S250

    Article  PubMed  CAS  Google Scholar 

  52. Corsi J, Hawtin RW, Ces O, Attard GS, Khalid S (2010) DNA lipoplexes: formation of the inverse hexagonal phase observed by coarse-grained molecular dynamics simulation. Langmuir 26:12119–12125

    Article  PubMed  CAS  Google Scholar 

  53. Muller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chem Phys Chem 3:754–769

    Article  CAS  Google Scholar 

  54. Lee H, Larson RG (2006) Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B 110:18204–18211

    Article  PubMed  CAS  Google Scholar 

  55. Lee H, Larson RG (2008) Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. J Phys Chem B 112:7778–7784

    Article  PubMed  CAS  Google Scholar 

  56. Lee H, de Vries AH, Marrink SJ, Pastor RW (2009) A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J Phys Chem B 113:13186–13194

    Article  PubMed  CAS  Google Scholar 

  57. Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissila T (2010) Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case Soft Matter 7:698–708

    Google Scholar 

  58. Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125:11144–11145

    Article  PubMed  CAS  Google Scholar 

  59. Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS (2006) Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. P Natl Acad Sci USA 103:11916–11921

    Article  CAS  Google Scholar 

  60. Baoukina S, Tieleman DP (2010) Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B. Biophys J 99:2134–2142

    Article  PubMed  CAS  Google Scholar 

  61. Smirnova YG, Marrink SJ, Lipowsky R, Knecht V (2010) Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J Am Chem Soc 132:6710–6718

    Article  PubMed  CAS  Google Scholar 

  62. Baoukina S, Monticelli L, Marrink SJ, Tieleman DP (2007) Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23:12617–12623

    Article  PubMed  CAS  Google Scholar 

  63. Duncan SL, Larson RG (2010) Folding of lipid monolayers containing lung surfactant proteins SP-B1-25 and SP-C studied via coarse-grained molecular dynamics simulations. BBA-Biomembranes 1798:1632–1650

    Article  PubMed  CAS  Google Scholar 

  64. Baoukina S, Monticelli L, Risselada HJ, Marrink SJ, Tieleman DP (2008) The molecular mechanism of lipid monolayer collapse. P Natl Acad Sci USA 105:10803–10808

    Article  CAS  Google Scholar 

  65. Schäfer LV, Marrink SJ (2010) Partitioning of lipids at domain boundaries in model membranes. Biophys J 99(12):L91–L93

    Article  PubMed  CAS  Google Scholar 

  66. Fuhrmans M, Knecht V, Marrink SJ (2009) A single bicontinuous cubic phase induced by fusion peptides. J Am Chem Soc 131:9166–9167

    Article  PubMed  CAS  Google Scholar 

  67. Polyansky AA, Ramaswarny PE, Volynsky PE, Sbalzarini IF, Marrink SJ, Efremov RG (2010) Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. J Phys Chem Lett 1:3108–3111

    Article  CAS  Google Scholar 

  68. Khalfa A, Tarek M (2010) On the antibacterial action of cyclic peptides: insights from coarse-grained MD simulations. J Phys Chem B 114:2676–2684

    Article  PubMed  CAS  Google Scholar 

  69. Bond PJ, Wee CL, Sansom MSP (2008) Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochem-Us 47:11321–11331

    Article  CAS  Google Scholar 

  70. Psachoulia E, Fowler PW, Bond PJ, Sansom MSP (2008) Helix-helix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization. Biochemistry 47:10503–10512

    Article  PubMed  CAS  Google Scholar 

  71. Sansom MSP, Scott KA, Bond PJ (2008) Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc T 36:27–32

    Article  CAS  Google Scholar 

  72. Yefimov S, van der Giessen E, Onck PR, Marrink SJ (2008) Mechanosensitive membrane channels in action. Biophys J 94:2994–3002

    Article  PubMed  CAS  Google Scholar 

  73. Louhivuori M, Risselada HJ, van de Rgiessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci USA 107(46):19856–19860. doi:10.1073/pnas.1001316107

    Article  PubMed  CAS  Google Scholar 

  74. Wei GH, Mousseau N, Derreumaux P (2004) Complex folding pathways in a simple beta-hairpin. Proteins 56:464–474

    Article  PubMed  CAS  Google Scholar 

  75. Treptow W, Marrink SJ, Tarek M (2008) Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations. J Phys Chem B 112:3277–3282

    Article  PubMed  CAS  Google Scholar 

  76. Lycklama JA, Bulacu M, Marrink SJ, Driessen AJM (2010) Immobilization of the plug domain inside the SecY channel allows unrestricted protein translocation. J Biol Chem 285:23747–23754

    Article  CAS  Google Scholar 

  77. Hatakeyama M, Faller R (2007) Coarse-grained simulations of ABA amphiphilic triblock copolymer solutions in thin films. Phys Chem Chem Phys 9:4662–4672

    Article  PubMed  CAS  Google Scholar 

  78. Lee H, Larson RG (2008) Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: The effect of molecular shape. J Phys Chem B 112:12279–12285

    Article  PubMed  CAS  Google Scholar 

  79. Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  PubMed  CAS  Google Scholar 

  80. Veatch SL, Polozov IV, Gawrisch K, Keller SL (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86:2910–2922

    Article  PubMed  CAS  Google Scholar 

  81. Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. P Natl Acad Sci USA 105:10005–10010

    Article  CAS  Google Scholar 

  82. Trabelsi S, Zhang S, Lee TR, Schwartz DK (2008) Linactants: Surfactant analogues in two dimensions. Phys Rev Lett 100:037802

    Article  PubMed  CAS  Google Scholar 

  83. Schäfer LV, de Jong DH, Holt A, Rzepiela AJ, de Vries AH, Poolman B, Killian JA, Marrink SJ (2010) Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci USA 108(4):1343–1348

    Article  Google Scholar 

  84. Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive Ion channel in escherichia-coli. P Natl Acad Sci USA 84:2297–2301

    Article  CAS  Google Scholar 

  85. Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struc Biol 13:432–442

    Article  CAS  Google Scholar 

  86. Kocer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309:755–758

    Article  PubMed  CAS  Google Scholar 

  87. Kocer A, Walko M, Feringa BL (2007) Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL. Nat Protoc 2:1426–1437

    Article  PubMed  CAS  Google Scholar 

  88. Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. Curr Top Membr 58:1–24

    Article  CAS  Google Scholar 

  89. Lenaz G, Genova ML (2009) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell B 41:1750–1772

    Article  CAS  Google Scholar 

  90. Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. BBA-Bioenergetics 1787:60–67

    Article  PubMed  CAS  Google Scholar 

  91. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together—Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    Article  PubMed  CAS  Google Scholar 

  92. Zhang M, Mileykovskaya E, Dowhan W (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280:29403–29408

    Article  PubMed  CAS  Google Scholar 

  93. Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880

    Article  PubMed  CAS  Google Scholar 

  94. Arnarez C, Elezgaray J, Mazat JP, Marrink SJ, Periole X. Evidence for cardiolipin binding sites on the membrane exposed surface of the respiratory chain complex III. In preparation

    Google Scholar 

  95. Shinoda W, DeVane R, Klein ML (2010) Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 114:6836–6849

    Article  PubMed  CAS  Google Scholar 

  96. Shinoda W, Devane R, Klein ML (2007) Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simulat 33:27–36

    Article  CAS  Google Scholar 

  97. DeVane R, Klein ML, Chiu CC, Nielsen SO, Shinoda W, Moore PB (2010) Coarse-grained potential models for phenyl-based molecules: I. Parametrization using experimental data. J Phys Chem B 114:6386–6393

    Article  PubMed  CAS  Google Scholar 

  98. Chiu CC, DeVane R, Klein ML, Shinoda W, Moore PB, Nielsen SO (2010) Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. J Phys Chem B 114:6394–6400

    Article  PubMed  CAS  Google Scholar 

  99. Bereau T, Deserno M (2009) Generic coarse-grained model for protein folding and aggregation. J Chem Phys 130:235106

    Article  PubMed  CAS  Google Scholar 

  100. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1993) Prediction of protein conformation on the basis of a search for compact structures—test on avian pancreatic-polypeptide. Protein Sci 2:1715–1731

    Article  PubMed  CAS  Google Scholar 

  101. Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA (2010) Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. J Phys Chem A 114:4471–4485

    Article  PubMed  CAS  Google Scholar 

  102. Ha-Duong T (2010) Protein backbone dynamics simulations using coarse-grained bonded potentials and simplified hydrogen bonds. J Chem Theory Comput 6:761–773

    Article  CAS  Google Scholar 

  103. Alemani D, Collu F, Cascella M, Dal Peraro M (2010) A nonradial coarse-grained potential for proteins produces naturally stable secondary structure elements. J Chem Theory Comput 6:315–324

    Article  CAS  Google Scholar 

  104. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struc Biol 17:192–198

    Article  CAS  Google Scholar 

  105. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  106. Rzepiela AJ, Schafer LV, Goga N, Risselada HJ, De Vries AH, Marrink SJ (2010) Software news and update reconstruction of atomistic details from coarse-grained structures. J Comput Chem 31:1333–1343

    PubMed  CAS  Google Scholar 

  107. Rzepiela AJ, Sengupta D, Goga N, Marrink SJ (2010) Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discuss 144:431–443

    Article  PubMed  CAS  Google Scholar 

  108. Neri M, Anselmi C, Cascella M, Maritan A, Carloni P (2005) Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys Rev Lett 95:218102

    Article  PubMed  CAS  Google Scholar 

  109. Nielsen SO, Bulo RE, Moore PB, Ensing B (2010) Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Phys Chem Chem Phys 12:12401–12414

    Article  PubMed  CAS  Google Scholar 

  110. Rzepiela AJ, Louhivuori M, Peter C, Marrink SJ (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys 13:10437–10448

    Article  PubMed  CAS  Google Scholar 

  111. Zoete V, Grosdidier A, Michielin O (2009) Docking, virtual high throughput screening and in silico fragment-based drug design. J Cell Mol Med 13:238–248

    Article  PubMed  CAS  Google Scholar 

  112. Andrusier N, Mashiach E, Nussinov R, Wolfson HJ (2008) Principles of flexible protein-protein docking. Proteins 73:271–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the many people that have directly and indirectly contributed to the development of the Martini force field. In particular Alex de Vries and all the past and present members of the MD group in Groningen are acknowledged for their dynamism and enthusiasm in using, criticizing and improving Martini, as well as the groups of Peter Tieleman, Luca Monticelli, and Ilpo Vattulainen. Clement Arnarez, Martti Louhivuori, Lars Schafer, and Durba Sengupta provided data and images for the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siewert-Jan Marrink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Periole, X., Marrink, SJ. (2013). The Martini Coarse-Grained Force Field. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics