Engineering and Application of Genetically Encoded Calcium Indicators

  • Jasper AkerboomEmail author
  • Lin Tian
  • Jonathan S. Marvin
  • Loren L. Looger
Part of the Neuromethods book series (NM, volume 72)


Genetically encoded fluorescent biosensors are useful tools for tracking target analytes in cells, tissues and living organisms. These probes are often chimeric proteins consisting of a recognition element (e.g., a ligand-binding protein) and a reporter element (one or more fluorescent proteins). The analyte-induced conformational change in the recognition element leads to an observable change in fluorescence in the reporter element. Expression of biosensors is noninvasive and can be targeted to specific tissues and cell types using specific promoter and enhancer sequences, and to subcellular compartments with signal peptides and retention tags. Recent improvements in both indicator engineering and microscopy methods enable chronic in vivo measurements. Here, we describe methods used in the design, testing, optimization and application of genetically encoded biosensors, with a particular focus on the widely utilized calcium indicator GCaMP.

Key words

GCaMP GECI Calcium imaging Neural activity imaging GCaMP3 Protein engineering 


  1. 1.
    Kazlauskas RJ, Bornscheuer UT (2009) Finding better protein engineering strategies. Nat Chem Biol 5:526–529PubMedGoogle Scholar
  2. 2.
    Marvin SJ, Looger LL (2010) Modulating protein interactions by rational and computational design. In: Sheldon J, Park JRC (eds) Protein engineering and design. CRC Press, Boca Raton, FL, pp 341–364Google Scholar
  3. 3.
    Marshall SA, Lazar GA, Chirino AJ, Desjarlais JR (2003) Rational design and engineering of therapeutic proteins. Drug Discov Today 8:212–221PubMedGoogle Scholar
  4. 4.
    Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci USA 106(Suppl 1):9995–10000PubMedGoogle Scholar
  5. 5.
    Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43PubMedGoogle Scholar
  6. 6.
    Maeda T, Oyama R, Titani K, Sekiguchi K (1993) Engineering of artificial cell-adhesive proteins by grafting EILDVPST sequence derived from fibronectin. J Biochem 113:29–35PubMedGoogle Scholar
  7. 7.
    Gordon DB, Marshall SA, Mayo SL (1999) Energy functions for protein design. Curr Opin Struct Biol 9:509–513PubMedGoogle Scholar
  8. 8.
    Shifman JM, Fromer M (2010) Search algorithms. In: Sheldon J, Park JRC (eds) Protein engineering and design. CRC Press, Boca Raton, FL, p 416Google Scholar
  9. 9.
    Beberg AL, Ensign DL, Jayachandran G, Khaliq S, Pande VS (2009) Folding@home: lessons from eight years of volunteer distributed computing. IEEE Int Symp Parallel Distribut Process 1–5(1624):1631, 3198Google Scholar
  10. 10.
    Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368PubMedGoogle Scholar
  11. 11.
    Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) computational design of retro-aldol enzymes. Science 319:1387–1391PubMedGoogle Scholar
  12. 12.
    Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313PubMedGoogle Scholar
  13. 13.
    Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190PubMedGoogle Scholar
  14. 14.
    Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195PubMedGoogle Scholar
  15. 15.
    Schreier B, Stumpp C, Wiesner S, Hocker B (2009) Computational design of ligand binding is not a solved problem. Proc Natl Acad Sci USA 106:18491–18496PubMedGoogle Scholar
  16. 16.
    Khersonsky O, Rothlisberger D, Dym O, Albeck S, Jackson CJ, Baker D, Tawfik DS (2010) Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. J Mol Biol 396:1025–1042PubMedGoogle Scholar
  17. 17.
    Lutz S (2010) Beyond directed evolution-semi-rational protein engineering and design. Curr Opin Biotechnol 6:734–743Google Scholar
  18. 18.
    Bottomly S, Helmerhorst E (2009) Molecular visualization. In: Bourne P, Gu J (eds) Structural bioinformatics, 2nd edn. John Wiley and Sons, Inc., New Jersey, pp 237–268Google Scholar
  19. 19.
    Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179PubMedGoogle Scholar
  20. 20.
    Guntas G, Mansell TJ, Kim JR, Ostermeier M (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci USA 102:11224–11229PubMedGoogle Scholar
  21. 21.
    Dougherty MJ, Arnold FH (2009) Directed evolution: new parts and optimized function. Curr Opin Biotechnol 20:486–491PubMedGoogle Scholar
  22. 22.
    Blagodatski A, Katanaev VL (2010) Technologies of directed protein evolution in vivo. Cell Mol Life Sci 68(7):1207–1214PubMedGoogle Scholar
  23. 23.
    Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391PubMedGoogle Scholar
  24. 24.
    Shen B (2002) PCR approaches to DNA mutagenesis and recombination. An overview. Methods Mol Biol 192:167–174PubMedGoogle Scholar
  25. 25.
    Lipovsek D, Pluckthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67PubMedGoogle Scholar
  26. 26.
    Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100PubMedGoogle Scholar
  27. 27.
    Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37:D588–D592PubMedGoogle Scholar
  28. 28.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238PubMedGoogle Scholar
  29. 29.
    Consortium TU (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148Google Scholar
  30. 30.
    Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664PubMedGoogle Scholar
  31. 31.
    Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980PubMedGoogle Scholar
  32. 32.
    Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371PubMedGoogle Scholar
  33. 33.
    Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738PubMedGoogle Scholar
  34. 34.
    Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531PubMedGoogle Scholar
  35. 35.
    Kuipers RK, Joosten HJ, Verwiel E, Paans S, Akerboom J, van der Oost J, Leferink NG, van Berkel WJ, Vriend G, Schaap PJ (2009) Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins 76:608–616PubMedGoogle Scholar
  36. 36.
    Davidson AR (2006) Multiple sequence alignment as a guideline for protein engineering strategies. Methods Mol Biol 340:171–181PubMedGoogle Scholar
  37. 37.
    Kaper T, Brouns SJ, Geerling AC, De Vos WM, Van der Oost J (2002) DNA family shuffling of hyperthermostable beta-glycosidases. Biochem J 368:461–470PubMedGoogle Scholar
  38. 38.
    Brouns SJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J (2005) Engineering a selectable marker for hyperthermophiles. J Biol Chem 280:11422–11431PubMedGoogle Scholar
  39. 39.
    Schmidt-Dannert C, Arnold FH (1999) Directed evolution of industrial enzymes. Trends Biotechnol 17:135–136PubMedGoogle Scholar
  40. 40.
    Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91:10747–10751PubMedGoogle Scholar
  41. 41.
    Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13:3–9PubMedGoogle Scholar
  42. 42.
    Naimuddin M, Kobayashi S, Tsutsui C, Machida M, Nemoto N, Sakai T, Kubo T (2011) Directed evolution of a three-finger neurotoxin by using cDNA display yields antagonists as well as agonists of interleukin-6 receptor signaling. Mol Brain 4:2PubMedGoogle Scholar
  43. 43.
    Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382PubMedGoogle Scholar
  44. 44.
    Wassman CD, Tam PY, Lathrop RH, Weiss GA (2004) Predicting oligonucleotide-directed mutagenesis failures in protein engineering. Nucleic Acids Res 32:6407–6413PubMedGoogle Scholar
  45. 45.
    Kunkel TA, Bebenek K, McClary J (1991) Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol 204:125–139PubMedGoogle Scholar
  46. 46.
    Clackson T, Lowman HB (eds) (2004) Phage display a practical approach. In: Practical approach series no 266. Oxford University Press, Oxford, New York, pp xxiv, p 332Google Scholar
  47. 47.
    Apte A, Daniel S (2009) PCR primer design. Cold Spring Harb Protoc 2009(3):pdb ip65PubMedGoogle Scholar
  48. 48.
    Handa P, Thanedar S, Varshney U (2002) Rapid and reliable site-directed mutagenesis using Kunkel’s approach. Methods Mol Biol 182:1–6PubMedGoogle Scholar
  49. 49.
    Yamakage M, Namiki A (2002) Calcium channels – basic aspects of their structure, function and gene encoding; anesthetic action on the channels – a review. Can J Anaesth 49:151–164PubMedGoogle Scholar
  50. 50.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239PubMedGoogle Scholar
  51. 51.
    Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29:229–234PubMedGoogle Scholar
  52. 52.
    Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669PubMedGoogle Scholar
  53. 53.
    Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165PubMedGoogle Scholar
  54. 54.
    Fetcho JR, Cox KJ, O’Malley DM (1998) Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate. Histochem J 30:153–167PubMedGoogle Scholar
  55. 55.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324PubMedGoogle Scholar
  56. 56.
    Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence – a new class of fluorescent indicators. J Biol Chem 272:13270–13274PubMedGoogle Scholar
  57. 57.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedGoogle Scholar
  58. 58.
    Klee CB, Vanaman TC (1982) Calmodulin. Adv Protein Chem 35:213–321PubMedGoogle Scholar
  59. 59.
    Kretsinger RH, Rudnick SE, Weissman LJ (1986) Crystal-structure of calmodulin. J Inorg Biochem 28:289–302PubMedGoogle Scholar
  60. 60.
    Cheung WY (1980) Calmodulin plays a pivotal role in cellular-regulation. Science 207:19–27PubMedGoogle Scholar
  61. 61.
    Cheung WY, Harper JF, Steiner AL, Wallace RW, Wood JG (1980) Calmodulin as a mediator of Ca2+ functions. Fed Proc 39:1658Google Scholar
  62. 62.
    Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328PubMedGoogle Scholar
  63. 63.
    Blumenthal DK, Takio K, Edelman AM, Charbonneau H, Walsh K, Titani K, Krebs EG (1985) Identification of the calmodulin-binding domain of skeletal-muscle myosin light chain kinase. Biophys J 47:A76Google Scholar
  64. 64.
    Andrews DL (1989) A unified theory of radiative and radiationless molecular-energy transfer. Chem Phys 135:195–201Google Scholar
  65. 65.
    Miyawaki A (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem 80:327–332Google Scholar
  66. 66.
    Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414PubMedGoogle Scholar
  67. 67.
    Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved Cameleons. Proc Natl Acad Sci USA 96:2135–2140PubMedGoogle Scholar
  68. 68.
    Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194PubMedGoogle Scholar
  69. 69.
    Truong K, Sawano A, Mizuno H, Hama H, Tong KI, Mal TK, Miyawaki A, Ikura M (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8:1069–1073PubMedGoogle Scholar
  70. 70.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90PubMedGoogle Scholar
  71. 71.
    Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559PubMedGoogle Scholar
  72. 72.
    Evanko DS, Haydon PG (2005) Elimination of environmental sensitivity in a Cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 37:341–348PubMedGoogle Scholar
  73. 73.
    Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409PubMedGoogle Scholar
  74. 74.
    Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530PubMedGoogle Scholar
  75. 75.
    Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732PubMedGoogle Scholar
  76. 76.
    Roe MW, Fiekers JF, Philipson LH, Bindokas VP (2006) Visualizing calcium signaling in cells by digitized wide-field and confocal fluorescent microscopy. Methods Mol Biol 319:37–66PubMedGoogle Scholar
  77. 77.
    Heim N, Griesbeck O (2004) Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem 279:14280–14286PubMedGoogle Scholar
  78. 78.
    Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796PubMedGoogle Scholar
  79. 79.
    Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hubener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811PubMedGoogle Scholar
  80. 80.
    Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246PubMedGoogle Scholar
  81. 81.
    Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98:3197–3202PubMedGoogle Scholar
  82. 82.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141PubMedGoogle Scholar
  83. 83.
    Ohkura M, Matsuzaki M, Kasai H, Imoto K, Nakai J (2005) Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal Chem 77:5861–5869PubMedGoogle Scholar
  84. 84.
    Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA 103:4753–4758PubMedGoogle Scholar
  85. 85.
    Souslova EA, Belousov VV, Lock JG, Stromblad S, Kasparov S, Bolshakov AP, Pinelis VG, Labas YA, Lukyanov S, Mayr LM, Chudakov DM (2007) Single fluorescent protein-based Ca2+ sensors with increased dynamic range. BMC Biotechnol 7:37PubMedGoogle Scholar
  86. 86.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881PubMedGoogle Scholar
  87. 87.
    Shindo A, Hara Y, Yamamoto TS, Ohkura M, Nakai J, Ueno N (2010) Tissue-tissue interaction-triggered calcium elevation is required for cell polarization during Xenopus gastrulation. PLoS One 5:e8897PubMedGoogle Scholar
  88. 88.
    Muto A, Ohkura M, Kotani T, Higashijima SI, Nakai J, Kawakami K (2011) Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proc Natl Acad Sci USA 108(13):5425–5430PubMedGoogle Scholar
  89. 89.
    Akerboom J, Rivera JD, Guilbe MM, Malave EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284:6455–6464PubMedGoogle Scholar
  90. 90.
    Leder L, Stark W, Freuler F, Marsh M, Meyerhofer M, Stettler T, Mayr LM, Britanova OV, Strukova LA, Chudakov DM, Souslova EA (2010) The structure of Ca2+ sensor Case16 reveals the mechanism of reaction to low Ca2+ concentrations. Sensors 10:8143–8160PubMedGoogle Scholar
  91. 91.
    Wang Q, Shui B, Kotlikoff MI, Sondermann H (2008) Structural basis for calcium sensing by GCaMP2. Structure 16:1817–1827PubMedGoogle Scholar
  92. 92.
    Hires SA, Tian L, Looger LL (2008) Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol 36:69–86PubMedGoogle Scholar
  93. 93.
    Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3:e1796PubMedGoogle Scholar
  94. 94.
    Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004(219):pl5PubMedGoogle Scholar
  95. 95.
    Kerr JN, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205PubMedGoogle Scholar
  96. 96.
    Borghuis BG, Tian L, Xu Y, Nikonov SS, Vardi N, Zemelman BV, Looger LL (2011) Imaging light responses of targeted neuron populations in the rodent retina. J Neurosci 31:2855–2867PubMedGoogle Scholar
  97. 97.
    McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46:152–159PubMedGoogle Scholar
  98. 98.
    Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889PubMedGoogle Scholar
  99. 99.
    Tian L, Looger LL (2008) Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems. Drug Discov Today Dis Model 5:27–35Google Scholar
  100. 100.
    Rodriguez Guilbe MM, Alfaro Malave EC, Akerboom J, Marvin JS, Looger LL, Schreiter ER (2008) Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:629–631PubMedGoogle Scholar
  101. 101.
    Kirchhofer A, Helma J, Schmidthals K, Frauer C, Cui S, Karcher A, Pellis M, Muyldermans S, Casas-Delucchi CS, Cardoso MC, Leonhardt H, Hopfner KP, Rothbauer U (2010) Modulation of protein properties in living cells using nanobodies. Nat Struct Mol Biol 17:133–138PubMedGoogle Scholar
  102. 102.
    Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88PubMedGoogle Scholar
  103. 103.
    Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234PubMedGoogle Scholar
  104. 104.
    Taylor RG, Walker DC, McInnes RR (1993) E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res 21:1677–1678PubMedGoogle Scholar
  105. 105.
    Birdsall NJ, Hulme EC, Keen M, Pedder EK, Poyner D, Stockton JM, Wheatley M (1986) Soluble and membrane-bound muscarinic acetylcholine receptors. Biochem Soc Symp 52:23–32PubMedGoogle Scholar
  106. 106.
    Foecking MK, Hofstetter H (1986) Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45:101–105PubMedGoogle Scholar
  107. 107.
    Yew NS (2005) Controlling the kinetics of transgene expression by plasmid design. Adv Drug Deliv Rev 57:769–780PubMedGoogle Scholar
  108. 108.
    Alexopoulou AN, Couchman JR, Whiteford JR (2008) The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC Cell Biol 9:2PubMedGoogle Scholar
  109. 109.
    Walantus W, Castaneda D, Elias L, Kriegstein A (2007) In utero intraventricular injection and electroporation of E15 mouse embryos. J Vis Exp 6:e239Google Scholar
  110. 110.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199PubMedGoogle Scholar
  111. 111.
    Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411PubMedGoogle Scholar
  112. 112.
    Ebashi S (1963) Third component participating in the superprecipitation of ‘natural actomyosin’. Nature 200:1010PubMedGoogle Scholar
  113. 113.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedGoogle Scholar
  114. 114.
    Ai HW, Olenych SG, Wong P, Davidson MW, Campbell RE (2008) Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol 6:13PubMedGoogle Scholar
  115. 115.
    Lorkowski S, Cullen P (2003) Analysing gene expression: a handbook of methods: possibilities and pitfalls. Wiley-VCH, Weinheim; New YorkGoogle Scholar
  116. 116.
    Erlich HA (1989) PCR technology: principles and applications for DNA amplification. Macmillan Publishers; New York, NYGoogle Scholar
  117. 117.
    Liu R, Barrick JE, Szostak JW, Roberts RW (2000) Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol 318:268–293PubMedGoogle Scholar
  118. 118.
    Gold L (2001) mRNA display: diversity matters during in vitro selection. Proc Natl Acad Sci USA 98:4825–4826PubMedGoogle Scholar
  119. 119.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedGoogle Scholar
  120. 120.
    Barbas CF (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.YGoogle Scholar
  121. 121.
    Kay BK, Winter J, McCafferty J (1996) Phage display of peptides and proteins: a laboratory manual. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jasper Akerboom
    • 1
    Email author
  • Lin Tian
    • 2
  • Jonathan S. Marvin
    • 1
  • Loren L. Looger
    • 1
  1. 1.Janelia Farm Research CampusHoward Hughes Medical InstituteAshburnUSA
  2. 2.Department of Biochemistry and Molecular MedicineSchool of Medicine University of CaliforniaDavisUSA

Personalised recommendations