Skip to main content

In Vivo Functional Brain Imaging Using a Genetically Encoded Ca2+-Sensitive Bioluminescence Reporter, GFP-Aequorin

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 72))

Abstract

In experimentally amenable organism models, several different physiological techniques have been developed to functionally record the neuronal activity, with the goal to map the neuronal circuitry and elucidate the neural code underlying major neurophysiological functions, such as olfaction, vision, learning and memory, sleep, locomotor activity, to name but a few. Apart from electrophysiological approaches, the main approach is optical imaging, principally based on the detection of changes in calcium concentration using fluorescent probes/sensors. The first generation of sensors was based on detecting calcium activity using fluorescent dye markers. The second generation, based on the development of genetically encoded fluorescent probes has allowed to precisely target the neurons of interest. However, because all of these approaches based on fluorescence require light excitation, deep structures of the brain still remain difficult to record. This means that the development of other alternative or complementary techniques is still worthwhile. Recently a novel bioluminescence approach has been developed, allowing to functionally map, in vivo, neuronal activity and circuitry. The aim of this chapter is to describe detailed protocols, from the genesis and the use of the GFP-aequorin probe, the setup, the recording and the analysis methods to perform in vivo functional brain imaging in Drosophila. Some original results that have been revealed by this new approach are also presented as well as discussion about the biological signification of the detected and recorded Ca2+-activity. Finally, advantages and constraints of using this approach compared to others are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48:189–199

    Article  PubMed  CAS  Google Scholar 

  2. Griesbeck O (2004) Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 14:636–641

    Article  PubMed  CAS  Google Scholar 

  3. Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453:385–396

    Article  PubMed  CAS  Google Scholar 

  4. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57

    Article  PubMed  CAS  Google Scholar 

  5. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26:583–594

    Article  PubMed  CAS  Google Scholar 

  6. Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    Article  PubMed  CAS  Google Scholar 

  7. Fiala A, Spall T (2003) In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci STKE 174:PL6

    Google Scholar 

  8. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Wright NJ, Guo H, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y (2001) Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29:267–276

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514

    Article  PubMed  CAS  Google Scholar 

  11. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  PubMed  CAS  Google Scholar 

  12. Yu D, Baird GS, Tsien RY, Davis RL (2003) Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci 23:64–72

    PubMed  Google Scholar 

  13. Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42:437–449

    Article  PubMed  CAS  Google Scholar 

  14. Yu D, Keene AC, Srivatsan A, Waddell S, Davis RL (2005) Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123:945–957

    Article  PubMed  CAS  Google Scholar 

  15. Yu D, Akalal DB, Davis RL (2006) Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52:845–855

    Article  PubMed  CAS  Google Scholar 

  16. Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997

    Article  PubMed  Google Scholar 

  17. Hara M, Bindokas V, Lopez JP, Kaihara K, Landa LR Jr, Harbeck M, Roe MW (2004) Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am J Physiol Cell Physiol 287:C932–C938

    Article  PubMed  CAS  Google Scholar 

  18. Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M, Duebel J, Waters J, Bujard H, Griesbeck O, Tsien RY, Nagai T, Miyawaki A, Denk W (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2:e163

    Article  PubMed  Google Scholar 

  19. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559

    Article  PubMed  CAS  Google Scholar 

  20. Vincent P, Maskos U, Charvet I, Bourgeais L, Stoppini L, Leresche N, Changeux JP, Lambert R, Meda P, Paupardin-Tritsch D (2006) Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Rep 11:1154–1161

    Article  Google Scholar 

  21. Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778

    Article  PubMed  CAS  Google Scholar 

  22. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci USA 75:2611–2615

    Article  PubMed  CAS  Google Scholar 

  23. Shimomura O, Musicki B, Kishi Y (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J 261:913–920

    PubMed  CAS  Google Scholar 

  24. Shimomura O, Musicki B, Kishi Y, Inouye S (1993) Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14:373–378

    Article  PubMed  CAS  Google Scholar 

  25. Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL (2000) Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 113:3519–3529

    PubMed  CAS  Google Scholar 

  26. Gilland E, Miller AL, Karplus E, Baker R, Webb SE (1999) Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci USA 96:157–161

    Article  PubMed  CAS  Google Scholar 

  27. Rosay P, Davies SA, Yu Y, Sözen A, Kaiser K, Dow JA (1997) Cell-type specific calcium signalling in a Drosophila epithelium. J Cell Sci 110:1683–1692

    PubMed  CAS  Google Scholar 

  28. Rosay P, Armstrong JD, Wang Z, Kaiser K (2001) Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 30:759–770

    Article  PubMed  CAS  Google Scholar 

  29. Torfs H, Poels J, Detheux M, Dupriez V, Van Loy T, Vercammen L, Vassart G, Parmentier M, Vanden Broeck J (2002) Recombinant aequorin as a reporter for receptor-mediated changes of intracellular Ca2+-levels in Drosophila S2 cells. Invert Neurosci 4:119–124

    Article  PubMed  CAS  Google Scholar 

  30. Kerr M, Davies SA, Dow JA (2004) Cell-specific manipulation of second messengers; a toolbox for integrative physiology in Drosophila. Curr Biol 14:1468–1474

    Article  PubMed  CAS  Google Scholar 

  31. MacPherson MR, Pollock VP, Kean L, Southall TD, Giannakou ME, Broderick KE, Dow JA, Hardie RC, Davies SA (2005) Transient receptor potential-like channels are essential for calcium signaling and fluid transport in a Drosophila epithelium. Genetics 169:541–1552

    Google Scholar 

  32. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97:7260–7265

    Article  PubMed  CAS  Google Scholar 

  33. Gorokhovatsky AY, Marchenkov VV, Rudenko NV, Ivashina TV, Ksenzenko VN, Burkhardt N, Semisotnov GV, Vinokurov LM, Alakhov YB (2004) Fusion of Aequorea victoria GFP and aequorin provides their Ca2+-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochem Biophys Res Commun 320:703–711

    Article  PubMed  CAS  Google Scholar 

  34. Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brulet P (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 3:597–610

    Article  Google Scholar 

  35. Curie T, Rogers KL, Colasante C, Brûlet P (2007) Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2+ signaling. Mol Imaging 6:30–42

    PubMed  CAS  Google Scholar 

  36. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brûlet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974

    Article  PubMed  Google Scholar 

  37. Rogers KL, Martin JR, Renaud O, Karplus E, Nicola MA, Nguyen M, Picaud S, Shorte SL, Brûlet P (2008) EMCCD based bioluminescence recording of single-cell Ca2+. J Biomed Opt 13:1–10

    Google Scholar 

  38. Martin JR, Rogers KL, Chagneau C, Brûlet P (2007) In vivo bioluminescence imaging of Ca2+ signalling in the brain of Drosophila. PLoS One 2:e275

    Article  PubMed  Google Scholar 

  39. Murmu MS, Stinnakre J, Martin JR (2010) Presynaptic Ca2+-stores contribute to odor-induced response in Drosophila olfactory receptor neurons. J Exp Biol 213:4163–4173

    Article  PubMed  CAS  Google Scholar 

  40. Murmu MS, Stinnakre J, Réal E, Martin JR (2011) Calcium-stores mediate adaptation in axon terminals of Olfactory Receptor Neurons in Drosophila. BMC Neurosci 12:105

    Article  PubMed  CAS  Google Scholar 

  41. Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  42. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  43. Elliott DA, Brand AH (2008) The GAL4 system: a versatile system for the expression of genes. Methods Mol Biol 420:79–95

    Article  PubMed  CAS  Google Scholar 

  44. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  PubMed  CAS  Google Scholar 

  45. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    Article  PubMed  CAS  Google Scholar 

  46. Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351

    Article  PubMed  CAS  Google Scholar 

  47. Martin JR, Keller A, Sweeney ST (2002) Targeted expression of tetanus toxin: a new tool to study the neurobiology of behavior. Adv Genet 47:1–47

    Article  PubMed  CAS  Google Scholar 

  48. Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47:81–92

    Article  PubMed  CAS  Google Scholar 

  49. Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC (2009) Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101:3075–3088

    Article  PubMed  Google Scholar 

  50. Peabody NC, Pohl JB, Diao F, Vreede AP, Sandstrom DJ, Wang H, Zelensky PK, White BH (2009) Characterization of the decision network for wing expansion in Drosophila using targeted expression of the TRPM8 channel. J Neurosci 29:3343–3353

    Article  PubMed  CAS  Google Scholar 

  51. White B, Osterwalder T, Keshishian H (2001) Molecular genetic approaches to the targeted suppression of neuronal activity. Curr Biol 11:R1041–R1053

    Article  PubMed  CAS  Google Scholar 

  52. Hodge JJ (2009) Ion channels to inactivate neurons in Drosophila. Front Mol Neurosci 2:13

    Article  PubMed  Google Scholar 

  53. Aso Y, Grubel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H (2009) The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 23:156–172

    Article  PubMed  CAS  Google Scholar 

  54. Ashburner M (1989) Drosophila, A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  55. Roberts DB (1998) Drosophila, a practical approach. Oxford University Press, Oxford

    Google Scholar 

  56. Gu H, O’Dowd DK (2006) Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 26:265–272

    Article  PubMed  CAS  Google Scholar 

  57. Agulhon C, Platel JC, Kolomiets B, Forster V, Picaud S, Brocard J, Faure P, Brulet P (2007) Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina. J Physiol 583:945–958

    Article  PubMed  CAS  Google Scholar 

  58. Miller AL, Karplus E, Jaffe LF (1994) Imaging (Ca2+) i with aequorin using a photon imaging detector. Methods Cell Biol 40:305–338

    Article  PubMed  CAS  Google Scholar 

  59. Kazama H, Wilson RI (2008) Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58:401–413

    Article  PubMed  CAS  Google Scholar 

  60. Yaksi E, Wilson RI (2010) Electrical coupling between olfactory glomeruli. Neuron 67:1034–1047

    Article  PubMed  CAS  Google Scholar 

  61. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Article  PubMed  CAS  Google Scholar 

  62. Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302

    Article  PubMed  CAS  Google Scholar 

  63. Davis RL (2011) Traces of Drosophila memory. Neuron 70:8–19

    Article  PubMed  CAS  Google Scholar 

  64. Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861

    PubMed  CAS  Google Scholar 

  65. Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  PubMed  CAS  Google Scholar 

  66. Martin JR, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol A 185:277–288

    Article  PubMed  CAS  Google Scholar 

  67. Martin JR, Faure F, Ernst R (2002) The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila. J Neurogenet 15:1–15

    Google Scholar 

  68. Renn SC, Armstrong JD, Yang M, Wang Z, An X, Kaiser K, Taghert PH (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41:189–207

    Article  PubMed  CAS  Google Scholar 

  69. Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441:757–760

    Article  PubMed  CAS  Google Scholar 

  70. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802

    Article  PubMed  CAS  Google Scholar 

  71. Bellen HJ (1998) The fruit fly: a model organism to study the genetics of alcohol abuse and addiction? Cell 93:909–912

    Article  PubMed  CAS  Google Scholar 

  72. Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54:161–178

    Article  PubMed  CAS  Google Scholar 

  73. Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171

    Article  PubMed  CAS  Google Scholar 

  74. Muqit MM, Feany MB (2002) Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 3:237–243

    Article  PubMed  CAS  Google Scholar 

  75. Martin JR, Ollo R (1996) A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. EMBO J 15:1865–1876

    PubMed  CAS  Google Scholar 

  76. Markova SV, Vysotski ES, Blinks JR, Burakova LP, Wang BC, Lee J (2002) Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41:2227–2236

    Article  PubMed  CAS  Google Scholar 

  77. Bakayan A, Vaquero CF, Picazo F, Llopis J (2011) Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice. PLoS One 6(5):e19520

    Article  PubMed  CAS  Google Scholar 

  78. Manjarrés IM, Chamero P, Domingo B, Molina F, Llopis J, Alonso MT, García-Sancho J (2008) Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Arch 455:961–970

    Article  PubMed  Google Scholar 

  79. Barron AB (2000) Anaesthetising Drosophila for behavioural studies. J Insect Physiol 2000(46):439–442

    Article  Google Scholar 

  80. Martin JR (2003) Locomotor activity: a complex behavioural trait to unravel. Behav Processess 64:145–160

    Article  Google Scholar 

Download references

Acknowledgments

I’m indebted to P. Brûlet and his colleagues, K. Rogers, and S. Picaud, who have primarily developed the bioluminescence approach. I also thank the different past and present members of my laboratory (students and Post-Docs: E. Carbognin, M.S. Murmu, E. Real, P. Pavot, A. Khammari and L. Mellottée) who have participated in the development of the bioluminescence approach or recording neuronal activity, in Drosophila. I also thanks D. Nässel for the critical reading of the manuscript, as well as the French “Agence National pour la Recherche” (ANR-Neuroscience), the NERF (Neuropôle Ile-de France), and the CNRS, for their precious financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-René Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Martin, JR. (2012). In Vivo Functional Brain Imaging Using a Genetically Encoded Ca2+-Sensitive Bioluminescence Reporter, GFP-Aequorin. In: Martin, JR. (eds) Genetically Encoded Functional Indicators. Neuromethods, vol 72. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-014-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-014-4_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-013-7

  • Online ISBN: 978-1-62703-014-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics