Virtual Ligand Screening Combined with NMR to Identify Dvl PDZ Domain Inhibitors Targeting the Wnt Signaling

  • Jufang Shan
  • Jie J. ZhengEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 928)


Virtual ligand screening is a powerful technique to identify potential hits of targets and to increase hit rates. Here, we describe how we used this technique combined with NMR 15N HSQC experiments to obtain small molecules that bind to the PDZ domain of Dvl targeting the Wnt signaling pathway.

Key words

Virtual ligand screening Database search Docking NMR 15N HSQC SAR 


  1. 1.
    Wong H-C, et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the c-terminal region of Frizzled. Mol Cell. 2003;12:1251–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5:997–1014.PubMedCrossRefGoogle Scholar
  3. 3.
    Grandy D, et al. Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem. 2009; 284:16256–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee HJ, et al. Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled. Angew Chem Int Ed Engl. 2009;48:6448–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheyette BNR, et al. Dapper, a Dishevelled-associated antagonist of b-Catenin and JNK signaling, is required for Notochord formation. Dev Cell. 2002;2:449–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Gohlke H, Case DA. Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf. J Comput Chem. 2004;25:238–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang J, et al. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc. 2001;123:5221–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang W, et al. BIOMOLECULAR SIMULATIONS: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct. 2001;30:211–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Burbaum JJ, Sigal NH. New technologies for high-throughput screening. Curr Opin Chem Biol. 1997;1:72–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu B, et al. Technological advances in high-throughput screening. Am J Pharmacogenomics. 2004;4:263–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Bleicher KH, et al. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003;2:369–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Keseru GM, Makara GM. Hit discovery and hit-to-lead approaches. Drug Discov Today. 2006;11:741–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Irwin JJ, Shoichet BK. ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2004; 45:177–82.CrossRefGoogle Scholar
  15. 15.
    Hann MM, Oprea TI. Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol. 2004;8:255–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Shan J, et al. Identification of a specific inhibitor of the Dishevelled PDZ domain. Biochemistry. 2005;44:15495–503.PubMedCrossRefGoogle Scholar
  17. 17.
    London TBC, et al. Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain. Biochem Biophys Res Commun. 2004;322:326–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Hurst T. Flexible 3D searching: the directed tweak technique. J Chem Inf Comput Sci. 1994;34:190–6.CrossRefGoogle Scholar
  19. 19.
    Rarey M, et al. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996;261:470–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Clark RD, et al. Consensus scoring for ligand/protein interactions. J Mol Graph Model. 2002;20:281–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Zheng J, et al. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: Implications for stimulation of GTPase activity. J Mol Biol. 1996;255:14–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Delaglio F, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Goddard TD, Kenller DG SPARKY 3. University of California, San Francisco 2008.Google Scholar
  24. 24.
    Worrall JAR, et al. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome c and adrenodoxin. Biochemistry. 2003;42:7068–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Case DA, et al. AMBER 8. La Jolla: Scripps Research Institute; 2004.Google Scholar
  26. 26.
    Wang J, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Cornell WD, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–97.CrossRefGoogle Scholar
  28. 28.
    Cerutti DS, et al. Staggered Mesh Ewald: an extension of the Smooth Particle-Mesh Ewald method adding great versatility. J Chem Theory Comput. 2009;5:2322.PubMedCrossRefGoogle Scholar
  29. 29.
    Simmerling C, et al. Combined locally enhanced sampling and Particle Mesh Ewald as a strategy to locate the experimental structure of a nonhelical nucleic acid. J Am Chem Soc. 1998;120:7149–55.CrossRefGoogle Scholar
  30. 30.
    Gohlke H, et al. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003; 330:891–913.PubMedCrossRefGoogle Scholar
  31. 31.
    Kollman PA, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97.PubMedCrossRefGoogle Scholar
  32. 32.
    Gund P. Three-dimensional pharmacophoric pattern searching. Prog Mol Subcell Biol. 1977;5:17.Google Scholar
  33. 33.
    Guner OF. Pharmacophore perception, development, and use in drug design. La Jolla: International University Line; 2000.Google Scholar
  34. 34.
    Langer T, Hoffmann RD. Pharmacophores and pharmacophore searches. Wiley: Weinheim; 2006.CrossRefGoogle Scholar
  35. 35.
    Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2004;45:160–9.CrossRefGoogle Scholar
  36. 36.
    Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Long J-F, et al. Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J Mol Biol. 2003;327:203–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Feng W, et al. PDZ7 of glutamate receptor interacting protein binds to its target via a novel hydrophobic surface area. J Biol Chem. 2002;277:41140–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Structural BiologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations