Skip to main content

Use of Gene Targeting to Study Recombination in Mammalian Cell DNA Repair Mutants

  • Protocol
  • First Online:
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus. By using a simple and effective gene targeting method, we have generated a number of DNA repair-deficient cell lines that have been used in targeted recombination experiments to investigate pathways of recombinational repair in somatic mammalian cells. These methods can be readily customized to generate a variety of cell lines deficient in specific genes of interest and can be applied to study the roles of other DNA repair proteins in pathways of mammalian recombinational repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  PubMed  CAS  Google Scholar 

  2. Ramirez-Solis R, Davis AC, Bradley A (1993) Gene targeting in embryonic stem cells. Methods Enzymol 225:855–878

    Article  PubMed  CAS  Google Scholar 

  3. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  PubMed  CAS  Google Scholar 

  4. Waldman AS (1992) Targeted homologous recombination in mammalian cells. Crit Rev Oncol Hematol 12:49–64

    Article  PubMed  CAS  Google Scholar 

  5. Capecchi MR (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5:70–76

    Article  PubMed  CAS  Google Scholar 

  6. Friedberg EC, Meira LB (2006) Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage. Version 7. DNA Repair (Amst) 5:189–209

    Article  CAS  Google Scholar 

  7. Wijnhoven SW, van Steeg H (2003) Transgenic and knockout mice for DNA repair functions in carcinogenesis and mutagenesis. Toxicology 193:171–187

    Article  PubMed  CAS  Google Scholar 

  8. Dhar PK, Sonoda E, Fujimori A, Yamashita YM, Takeda S (2001) DNA repair studies: experimental evidence in support of chicken DT40 cell line as a unique model. J Environ Pathol Toxicol Oncol 20:273–283

    Article  PubMed  CAS  Google Scholar 

  9. Takata M, Ishiai M, Kitao H (2009) The Fanconi anemia pathway: insights from somatic cell genetics using DT40 cell line. Mutat Res 668:92–102

    Article  PubMed  CAS  Google Scholar 

  10. Winding P, Berchtold MW (2001) The chicken B cell line DT40: a novel tool for gene disruption experiments. J Immunol Methods 249:1–16

    Article  PubMed  CAS  Google Scholar 

  11. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  12. Fishman-Lobell J, Haber JE (1992) Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484

    Article  PubMed  CAS  Google Scholar 

  13. Ivanov EL, Haber JE (1995) RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15:2245–2251

    PubMed  CAS  Google Scholar 

  14. Schiestl RH, Prakash S (1988) RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 8:3619–3626

    PubMed  CAS  Google Scholar 

  15. Schiestl RH, Prakash S (1990) RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 10:2485–2491

    PubMed  CAS  Google Scholar 

  16. Sugawara N, Paques F, Colaiacovo M, Haber JE (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A 94:9214–9219

    Article  PubMed  CAS  Google Scholar 

  17. Adair GM, Nairn RS (1995) Impact on human diseases and cancer, in gene targeting. In: Vos J-M (ed) DNA repair mechanisms. Biomedical Landes Company, Austin, pp 301–328

    Google Scholar 

  18. Adair GM, Nairn RS, Wilson JH, Scheerer JB, Brotherman KA (1990) Targeted gene replacement at the endogenous APRT locus in CHO cells. Somat Cell Mol Genet 16:437–441

    Article  PubMed  CAS  Google Scholar 

  19. Adair GM, Nairn RS, Wilson JH, Seidman MM, Brotherman KA, MacKinnon C, Scheerer JB (1989) Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc Natl Acad Sci U S A 86:4574–4578

    Article  PubMed  CAS  Google Scholar 

  20. Nairn RS, Adair GM, Porter T, Pennington SL, Smith DG, Wilson JH, Seidman MM (1993) Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. Somat Cell Mol Genet 19:363–375

    Article  PubMed  CAS  Google Scholar 

  21. Porter T, Pennington SL, Adair GM, Nairn RS, Wilson JH (1990) A novel selection system for recombinational and mutational events within an intron of a eukaryotic gene. Nucleic Acids Res 18:5173–5180

    Article  PubMed  CAS  Google Scholar 

  22. Sargent RG, Merrihew RV, Nairn R, Adair G, Meuth M, Wilson JH (1996) The influence of a (GT)29 microsatellite sequence on homologous recombination in the hamster adenine phosphoribosyltransferase gene. Nucleic Acids Res 24:746–753

    Article  PubMed  CAS  Google Scholar 

  23. Scheerer JB, Adair GM (1994) Homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol Cell Biol 14:6663–6673

    PubMed  CAS  Google Scholar 

  24. Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS (2000) Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 19:5552–5561

    Article  PubMed  CAS  Google Scholar 

  25. Rolig RL, Layher SK, Santi B, Adair GM, Gu F, Rainbow AJ, Nairn RS (1997) Survival, mutagenesis, and host cell reactivation in a Chinese hamster ovary cell ERCC1 knock-out mutant. Mutagenesis 12:277–283

    Article  PubMed  CAS  Google Scholar 

  26. Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS, Wilson JH (2000) Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 28:3771–3778

    Article  PubMed  CAS  Google Scholar 

  27. Sargent RG, Rolig RL, Kilburn AE, Adair GM, Wilson JH, Nairn RS (1997) Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc Natl Acad Sci U S A 94:13122–13127

    Article  PubMed  CAS  Google Scholar 

  28. Tebbs RS, Hinz JM, Yamada NA, Wilson JB, Salazar EP, Thomas CB, Jones IM, Jones NJ, Thompson LH (2005) New insights into the Fanconi anemia pathway from an isogenic FancG hamster CHO mutant. DNA Repair (Amst) 4:11–22

    Article  CAS  Google Scholar 

  29. Hinz JM, Tebbs RS, Wilson PF, Nham PB, Salazar EP, Nagasawa H, Urbin SS, Bedford JS, Thompson LH (2006) Repression of mutagenesis by Rad51D-mediated homologous recombination. Nucleic Acids Res 34:1358–1368

    Article  PubMed  CAS  Google Scholar 

  30. Rahn JJ, Rowley B, Lowery MP, Coletta LD, Limanni T, Nairn RS, Adair GM (2011) Effects of varying gene targeting parameters on processing of recombination intermediates by ERCC1-XPF. DNA Repair (Amst) 10:188–198

    Article  CAS  Google Scholar 

  31. Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS (2010) Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 131:562–573

    Article  PubMed  CAS  Google Scholar 

  32. Gottesman MM (1985) Molecular cell genetics. Wiley, New York, NY

    Google Scholar 

  33. O’Neill JP, Couch DB, Machanoff R, San Sebastian JR, Brimer PA, Hsie AW (1977) A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): utilization with a variety of mutagenic agents. Mutat Res 45:103–109

    Article  PubMed  Google Scholar 

  34. Siciliano MJ, Stallings RL, Humphrey RM, Adair GM (1986) Mutation in somatic cells as determined by electrophoretic analysis of mutagen-exposed Chinese hamster ovary cells. In: de Serres FJ (ed) Chemical mutagens. Plenum, New York, NY, pp 509–531

    Chapter  Google Scholar 

  35. Thompson LH, Bachinski LL, Stallings RL, Dolf G, Weber CA, Westerveld A, Siciliano MJ (1989) Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Genomics 5:670–679

    Article  PubMed  CAS  Google Scholar 

  36. Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12:3365–3371

    PubMed  CAS  Google Scholar 

  37. te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A 89:5128–5132

    Article  Google Scholar 

  38. van Duin M, de Wit J, Odijk H, Westerveld A, Yasui A, Koken MH, Hoeijmakers JH, Bootsma D (1986) Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44:913–923

    Article  PubMed  Google Scholar 

  39. Adair GM, Scheerer JB, Brotherman A, McConville S, Wilson JH, Nairn RS (1998) Targeted recombination at the Chinese hamster APRT locus using insertion versus replacement vectors. Somat Cell Mol Genet 24:91–105

    Article  PubMed  CAS  Google Scholar 

  40. Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A (1991) Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350:243–246

    Article  PubMed  CAS  Google Scholar 

  41. Valancius V, Smithies O (1991) Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol 11:1402–1408

    PubMed  CAS  Google Scholar 

  42. Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586–5591

    PubMed  CAS  Google Scholar 

  43. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352

    Article  PubMed  CAS  Google Scholar 

  44. Kilburn AE, Shea MJ, Sargent RG, Wilson JH (2001) Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol Cell Biol 21:126–135

    Article  PubMed  CAS  Google Scholar 

  45. Merrihew RV, Sargent RG, Wilson JH (1995) Efficient modification of the APRT gene by FLP/FRT site-specific targeting. Somat Cell Mol Genet 21:299–307

    Article  PubMed  CAS  Google Scholar 

  46. Meservy JL, Sargent RG, Iyer RR, Chan F, McKenzie GJ, Wells RD, Wilson JH (2003) Long CTG tracts from the myotonic dystrophy gene induce deletions and rearrangements during recombination at the APRT locus in CHO cells. Mol Cell Biol 23:3152–3162

    Article  PubMed  CAS  Google Scholar 

  47. Sargent RG, Brenneman MA, Wilson JH (1997) Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol 17:267–277

    PubMed  CAS  Google Scholar 

  48. Smith DG, Adair GM (1996) Characterization of an apparent hotspot for spontaneous mutation in exon 5 of the Chinese hamster APRT gene. Mutat Res 352:87–96

    Article  PubMed  Google Scholar 

  49. Talbert LL, Coletta LD, Lowery MG, Bolt A, Trono D, Adair GM, Nairn RS (2008) Characterization of CHO XPF mutant UV41: influence of XPF heterozygosity on double-strand break-induced intrachromosomal recombination. DNA Repair (Amst) 7:1319–1329

    Article  CAS  Google Scholar 

  50. Stanners CP, Eliceiri GL, Green H (1971) Two types of ribosome in mouse-hampster hybrid cells. Nat New Biol 230:52–54

    PubMed  CAS  Google Scholar 

  51. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  52. Adair GM, Stallings RL, Nairn RS, Siciliano MJ (1983) High-frequency structural gene deletion as the basis for functional hemizygosity of the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 80:5961–5964

    Article  PubMed  CAS  Google Scholar 

  53. Mulligan RC, Berg P (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A 78:2072–2076

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Becky Brooks for assistance in manuscript preparation. This work was supported by PHS grant CA097175 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney S. Nairn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rahn, J.J., Adair, G.M., Nairn, R.S. (2012). Use of Gene Targeting to Study Recombination in Mammalian Cell DNA Repair Mutants. In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics