Skip to main content

Carbohydrate Microarrays in Plant Science

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 918))

Abstract

Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ekins R, Chu FW (1999) Microarrays: their origins and applications. Trends Biotechnol 17:217–218

    Article  PubMed  CAS  Google Scholar 

  2. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  3. McWilliam I, Chong Kwan M, Hall D (2011) Inkjet printing for the production of protein microarrays. Methods Mol Biol 785:345–361

    Article  PubMed  CAS  Google Scholar 

  4. Park S, Lee M-R, Shin I (2008) Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem Commun:4389–4399

    Google Scholar 

  5. Willats WG, Rasmussen SE, Kristensen T, Mikkelsen JD, Knox JP (2002) Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2:1666–1671

    Article  PubMed  CAS  Google Scholar 

  6. Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20:1011–1017

    Article  PubMed  CAS  Google Scholar 

  7. Feizi T (2000) Progress in deciphering the information content of the ‘glycome’—a crescendo in the closing years of the millennium. Glycoconj J 17:553–565

    Article  PubMed  CAS  Google Scholar 

  8. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  9. Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  10. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  11. Bacic A, Harris AJ, Stone BA (1988) In Preiss J (ed) The biochemistry of plants. Academic, New York

    Google Scholar 

  12. Lee KJ, Marcus SE, Knox JP (2011) Cell wall biology: perspectives from cell wall imaging. Mol Plant 4:212–219

    Article  PubMed  CAS  Google Scholar 

  13. Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104

    Article  CAS  Google Scholar 

  14. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) In Masson S (ed) Plant cell walls. Garland Science, Taylor and Francis Publishing Group, New York

    Google Scholar 

  15. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    Article  PubMed  CAS  Google Scholar 

  16. Smith DF, Song X, Cummings RD (2008) Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol 480:417–444 (Chapter 19)

    Article  Google Scholar 

  17. Larsen K, Thygesen MB, Guillaumie F, Willats WG, Jensen KJ (2006) Solid-phase chemical tools for glycobiology. Carbohydr Res 341:1209–1234

    Article  PubMed  CAS  Google Scholar 

  18. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101:17033–17038

    Article  PubMed  CAS  Google Scholar 

  19. Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Ulvskov P, Mikkelsen JD, Knox JP, Willats WGT (2008) High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj J 25:37–48

    Article  PubMed  CAS  Google Scholar 

  20. Feizi T, Chai W (2004) Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol 5:582–588

    Article  PubMed  CAS  Google Scholar 

  21. Feizi T, Fazio F, Chai W, Wong CH (2003) Carbohydrate microarrays—a new set of ­technologies at the frontiers of glycomics. Curr Opin Struct Biol 13:637–645

    Article  PubMed  CAS  Google Scholar 

  22. Shipp M, Nadella R, Gao H, Farkas V, Sigrist H, Faik A (2008) Glyco-array technology for efficient monitoring of plant cell wall glycosyltransferase activities. Glycoconj J 25:49–58

    Article  PubMed  CAS  Google Scholar 

  23. Kosík O, Auburn RP, Russell S, Stratilová E, Garajová S, Hrmova M, Farkaš V (2010) Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts. Glycoconj J 27:79–87

    Article  PubMed  Google Scholar 

  24. Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, Pettolino F, Roberts A, Mikkelsen JD, Knox JP, Bacic A, Willats WG (2007) High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J 50:1118–1128

    Article  PubMed  CAS  Google Scholar 

  25. Øbro J, Sørensen I, Derkx P, Madsen CT, Drews M, Willer M, Mikkelsen JD, Willats WG (2009) High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays. Proteomics 9:1861–1868

    Article  PubMed  Google Scholar 

  26. Øbro J, Sørensen I, Moller I, Skjøt M, Mikkelsen J, Willats WGT (2007) High-throughput microarray analysis of pectic polymers by enzymatic epitope deletion. Carbohydr Polym 70:77–81

    Article  Google Scholar 

  27. Singh B, Avci U, Eichler Inwood SE, Grimson MJ, Landgraf J, Mohnen D, Sørensen I, Wilkerson CG, Willats WG, Haigler CH (2009) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699

    Article  PubMed  CAS  Google Scholar 

  28. Moller IE, De Fine Licht HH, Harholt J, Willats WG, Boomsma JJ (2011) The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens. PLoS One 6:e17506

    Article  PubMed  CAS  Google Scholar 

  29. Sørensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, Willats WGT (2008) Mixed linkage (1→3), (1→4)-β-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 54:510–521

    Article  PubMed  Google Scholar 

  30. Chae K, Lord EM (2010) Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot 108:627–636

    Article  Google Scholar 

  31. Mollet J-C, Park S-Y, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1750

    PubMed  CAS  Google Scholar 

  32. Cid M, Pedersen HL, Kaneko S, Coutinho PM, Henrissat B, Willats WG, Boraston AB (2010) Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules. J Biol Chem 285:35999–36009

    Article  PubMed  CAS  Google Scholar 

  33. Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC (2008) New insights into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. J Agric Food Chem 56:9269–9276

    Article  PubMed  CAS  Google Scholar 

  34. Guillaumie F, Sterling JD, Jensen KJ, Thomas OR, Mohnen D (2003) Solid-supported enzymatic synthesis of pectic oligogalacturonides and their analysis by MALDI-TOF mass spectrometry. Carbohydr Res 338:1951–1960

    Article  PubMed  CAS  Google Scholar 

  35. Spadiut O, Ibatullin FM, Peart J, Gullfot F, Martinez-Fleites C, Ruda M, Xu C, Sundqvist G, Davies GJ, Brumer H (2011) Building custom polysaccharides in vitro with an efficient, broad-specificity xyloglucan glycosynthase and a fucosyltransferase. J Am Chem Soc 133:10892–10900

    Article  PubMed  CAS  Google Scholar 

  36. Davis BG (2000) Recent developments in oligosaccharide synthesis. J Chem Soc Perkin Trans 1:2137–2160

    Article  Google Scholar 

  37. Kaji E, Nishino T, Ishige K, Ohya Y, Shirai Y (2010) Regioselective glycosylation of fully unprotected methyl hexopyranosides by means of transient masking of hydroxy groups with arylboronic acids. Tetrahedron Lett 51:1570–1573

    Article  CAS  Google Scholar 

  38. Lawandi J, Rocheleau S, Moitessier N (2011) Directing/protecting groups mediate highly regioselective glycosylation of monoprotected acceptors. Tetrahedron 67:8411–8420

    Article  CAS  Google Scholar 

  39. Carmona AT, Moreno-Vargas AJ, Robina I (2008) Glycosylation methods in oligosaccharide synthesis. Part 1. Curr Org Synth 5:33–60

    Article  CAS  Google Scholar 

  40. Carmona AT, Moreno-Vargas AJ, Robina I (2008) Glycosylation methods in oligosaccharide synthesis. Part 2. Curr Org Synth 5:81–116

    Article  CAS  Google Scholar 

  41. Demchenko AV (ed) (2008) Handbook of chemical glycosylation. Wiley-VCH, Weinheim

    Google Scholar 

  42. Fraser-Reid B, López JC (eds) (2011) Reactivity tuning in oligosaccharide assembly. Topics in current chemistry, vol 301. Springer, Berlin

    Google Scholar 

  43. Nakahara Y, Ogawa T (1990) Stereoselective total synthesis of dodecagalacturonic acid, a phytoalexin elicitor of soybean. Carbohydr Res 205:147–159

    Article  PubMed  CAS  Google Scholar 

  44. Clausen MH, Madsen R (2003) Synthesis of hexasaccharide fragments of pectin. Chem Eur J 9:3821–3832

    Article  PubMed  CAS  Google Scholar 

  45. Clausen MH, Madsen R (2004) Synthesis of oligogalacturonates conjugated to BSA. Carbohydr Res 339:2159–2169

    Article  PubMed  CAS  Google Scholar 

  46. Petersen BO, Meier S, Duus JØ, Clausen MH (2008) Structural characterization of homogalacturonan by NMR spectroscopy—assignment of reference compounds. Carbohydr Res 343:2830–2833

    Article  PubMed  CAS  Google Scholar 

  47. Reiffarth D, Reimer KB (2008) Synthesis of two repeat units corresponding to the ­backbone of the pectic polysaccharide rhamnogalacturonan I. Carbohydr Res 343:179–188

    Article  PubMed  CAS  Google Scholar 

  48. Maruyama M, Takeda T, Shimizu N, Hada N, Yamada H (2000) Synthesis of a model compound related to an anti-ulcer pectic polysaccharide. Carbohydr Res 325:83–92

    Article  PubMed  CAS  Google Scholar 

  49. Nemati N, Karapetyan G, Nolting B, Endress HU, Vogel C (2008) Synthesis of rhamnogalacturonan I fragments by a modular design principle. Carbohydr Res 343:1730–1742

    Article  PubMed  CAS  Google Scholar 

  50. Scanlan EM, Mackeen MM, Wormald MR, Davis BG (2010) Synthesis and solution-phase conformation of the RG-I fragment of the plant polysaccharide pectin reveals a modification-modulated assembly mechanism. J Am Chem Soc 132:7238–7239

    Article  PubMed  CAS  Google Scholar 

  51. Du Y, Pan Q, Kong F (2000) An efficient and concise regioselective synthesis of α-(1→5)-linked l-arabinofuranosyl oligosaccharides. Carbohydr Res 329:17–24

    Article  PubMed  CAS  Google Scholar 

  52. El-Shenawy H, Schuerch C (1984) Synthesis and characterization of propyl O-β-d-galactopyranosyl-(1→4)-O-β-d-galactopyra­nosyl-(1→4)-α-d-galactopyranoside. Carbohydr Res 131:239–246

    Article  PubMed  CAS  Google Scholar 

  53. Fekete A, Borbás A, Antus S, Lipták A (2009) Synthesis of 3,6-branched arabinogalactan-type tetra and hexasaccharides for characterization of monoclonal antibodies. Carbohydr Res 344:1434–1441

    Article  PubMed  CAS  Google Scholar 

  54. Chauvin AL, Nepogodiev SA, Field RA (2005) Synthesis of a 2,3,4-triglycosylated rhamnoside fragment of rhamnogalacturonan-II side chain A using a late stage oxidation approach. J Org Chem 70:960–966

    Article  PubMed  CAS  Google Scholar 

  55. Rao Y, Boons GJ (2007) A highly convergent chemical synthesis of conformational epitopes of rhamnogalacturonan II. Angew Chem Int Ed 46:6148–6151

    Article  CAS  Google Scholar 

  56. Rao Y, Buskas T, Albert A, O’Neill MA, Hahn MG, Boons GJ (2008) Synthesis and immunological properties of a tetrasaccharide portion of the B side chain of rhamnogalacturonan II (RG-II). Chembiochem 9:381–388

    Article  PubMed  CAS  Google Scholar 

  57. Takeo K, Ohguchi Y, Hasegawa R, Kitamura S (1995) Synthesis of (1→4)-β-d-xylo-oligosaccharides of dp 4–10 by a blockwise approach. Carbohydr Res 278:301–313

    Article  PubMed  CAS  Google Scholar 

  58. Seeberger PH, Haase WC (2000) Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem Rev 100:4349–4394

    Article  PubMed  CAS  Google Scholar 

  59. Weishaupt M, Eller S, Seeberger PH (2010) In Fukuda M (ed) Solid phase synthesis of oligosaccharides. Methods Enzymol 478:463–484

    Google Scholar 

  60. Boltje TJ, Kim JH, Park J, Boons GJ (2010) Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched alpha-glucan. Nat Chem 2:552–557

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. T. Willats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fangel, J.U. et al. (2012). Carbohydrate Microarrays in Plant Science. In: Normanly, J. (eds) High-Throughput Phenotyping in Plants. Methods in Molecular Biology, vol 918. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-995-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-995-2_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-994-5

  • Online ISBN: 978-1-61779-995-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics