Skip to main content

Forward Genetic Screens in Xenopus Using Transposon-Mediated Insertional Mutagenesis

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

The class II DNA “cut-and-paste” transposons have been used to efficiently modify the Xenopus genome for transgenesis applications. Once integrated, the transposon is an effective substrate for excision and re-integration (remobilization) elsewhere in the genome by simply supplying the transposase enzyme in trans. We have used two methods to remobilize transposons resident in the frog genome: micro-injection of transposase mRNA at the one-cell stage and expression of the enzyme in the germline from a transgene. Double-transgenic frogs (hoppers) that harbor transgenes for both the substrate transposon and the transposase enzyme are outcrossed to wild-type animals and the progeny are scored for changes in reporter gene expression. Although both methods work effectively to remobilize transposons, the breeding-mediated strategy eliminates the time-consuming micro-injection step; novel integration events are produced by simply outcrossing the hopper frogs. As each outcross of Xenopus tropicalis typically produces 2,000, or more, progeny, this method can be used to perform large-scale insertional mutagenesis screens in this highly tractable developmental model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark KJ, Geurts AM, Bell JB, Hackett PB (2004) Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis 39:225–233

    Article  PubMed  CAS  Google Scholar 

  2. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  3. Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci U S A 99:4495–4499

    Article  PubMed  CAS  Google Scholar 

  4. Grabher C, Henrich T, Sasado T, Arenz A, Wittbrodt J, Furutani-Seiki M (2003) Transposon-mediated enhancer trapping in medaka. Gene 322:57–66

    Article  PubMed  CAS  Google Scholar 

  5. Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  PubMed  CAS  Google Scholar 

  6. Ivics Z, Izsvak Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Methods Mol Biol 260:255–276

    PubMed  CAS  Google Scholar 

  7. Izsvak Z, Ivics Z, Plasterk RH (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302:93–102

    Article  PubMed  CAS  Google Scholar 

  8. Johnson Hamlet MR, Mead PE (2003) Sleeping Beauty and Xenopus: transposons as genetic tools. Curr Genomics 4:687–697

    Article  Google Scholar 

  9. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(suppl 1):S7

    Article  PubMed  Google Scholar 

  10. Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474

    Article  PubMed  CAS  Google Scholar 

  11. Korzh V (2007) Transposons as tools for enhancer trap screens in vertebrates. Genome Biol 8(suppl 1):S8

    Article  PubMed  Google Scholar 

  12. Miskey C, Izsvak Z, Kawakami K, Ivics Z (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62:629–641

    Article  PubMed  CAS  Google Scholar 

  13. Takeda J, Keng VW, Horie K (2007) Germline mutagenesis mediated by Sleeping Beauty transposon system in mice. Genome Biol 8(suppl 1):S14

    Article  PubMed  Google Scholar 

  14. Yergeau DA, Mead PE (2007) Manipulating the Xenopus genome with transposable elements. Genome Biol 8(suppl 1):S11

    Article  PubMed  Google Scholar 

  15. Collier LS, Largaespada DA (2007) Transposons for cancer gene discovery: Sleeping Beauty and beyond. Genome Biol 8(suppl 1):S15

    Article  PubMed  Google Scholar 

  16. Dupuy AJ, Fritz S, Largaespada DA (2001) Transposition and gene disruption in the male germline of the mouse. Genesis 30:82–88

    Article  PubMed  CAS  Google Scholar 

  17. Largaespada DA (2009) Transposon mutagenesis in mice. Methods Mol Biol 530:379–390

    Article  PubMed  CAS  Google Scholar 

  18. Su Q, Prosser HM, Campos LS, Ortiz M, Nakamura T, Warren M, Dupuy AJ, Jenkins NA, Copeland NG, Bradley A, Liu P (2008) A DNA transposon-based approach to validate oncogenic mutations in the mouse. Proc Natl Acad Sci U S A 105:19904–19909

    Article  PubMed  CAS  Google Scholar 

  19. Keng VW, Ryan BJ, Wangensteen KJ, Baciunas D, Schmedt C, Ekker SC, Largaespada DA (2009) Efficient transposition of Tol2 in the mouse germline. Genetics 183:1565–1573

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Bradley A, Huang Y (2009) A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res 19:667–673

    Article  PubMed  CAS  Google Scholar 

  21. Kitada K, Keng VW, Takeda J, Horie K (2009) Generating mutant rats using the Sleeping Beauty transposon system. Methods 49(3):236–242

    Article  PubMed  CAS  Google Scholar 

  22. Lu B, Geurts AM, Poirier C, Petit DC, Harrison W, Overbeek PA, Bishop CE (2007) Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm Genome 18:338–346

    Article  PubMed  CAS  Google Scholar 

  23. Urasaki A, Asakawa K, Kawakami K (2008) Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proc Natl Acad Sci U S A 105:19827–19832

    Article  PubMed  CAS  Google Scholar 

  24. Choo BG, Kondrichin I, Parinov S, Emelyanov A, Go W, Toh WC, Korzh V (2006) Zebrafish transgenic enhancer TRAP line database (ZETRAP). BMC Dev Biol 6:5

    Article  PubMed  Google Scholar 

  25. Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V (2009) Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 10:418

    Article  PubMed  Google Scholar 

  26. Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE (2010) Remobilization of Tol2 transposons in Xenopus tropicalis. BMC Dev Biol 10:11

    Article  PubMed  Google Scholar 

  27. Bestor TH (2005) Transposons reanimated in mice. Cell 122:322–325

    Article  PubMed  CAS  Google Scholar 

  28. Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276

    Article  PubMed  CAS  Google Scholar 

  29. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226

    Article  PubMed  CAS  Google Scholar 

  30. Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330:1104–1107

    Article  PubMed  CAS  Google Scholar 

  31. Vassiliou G, Rad R, Bradley A (2010) The use of DNA transposons for cancer gene discovery in mice. Methods Enzymol 477:91–106

    Article  PubMed  CAS  Google Scholar 

  32. Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231:449–459

    Article  PubMed  CAS  Google Scholar 

  33. Hirsch N, Zimmerman LB, Grainger RM (2002) Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225:422–433

    Article  PubMed  CAS  Google Scholar 

  34. Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5:62

    Article  PubMed  Google Scholar 

  35. Balciunas D, Ekker SC (2005) Trapping fish genes with transposons. Zebrafish 1:335–341

    Article  PubMed  Google Scholar 

  36. Bronchain OJ, Hartley KO, Amaya E (1999) A gene trap approach in Xenopus. Curr Biol 9:1195–1198

    Article  PubMed  CAS  Google Scholar 

  37. Kawakami K (2005) Transposon tools and methods in zebrafish. Dev Dyn 234:244–254

    Article  PubMed  CAS  Google Scholar 

  38. Kotani T, Nagayoshi S, Urasaki A, Kawakami K (2006) Transposon-mediated gene trapping in zebrafish. Methods 39:199–206

    Article  PubMed  CAS  Google Scholar 

  39. Sivasubbu S, Balciunas D, Amsterdam A, Ekker SC (2007) Insertional mutagenesis strategies in zebrafish. Genome Biol 8(suppl 1):S9

    Article  PubMed  Google Scholar 

  40. Urasaki A, Kawakami K (2009) Analysis of genes and genome by the tol2-mediated gene and enhancer trap methods. Methods Mol Biol 546:85–102

    Article  PubMed  CAS  Google Scholar 

  41. Salminen M, Meyer BI, Gruss P (1998) Efficient poly A trap approach allows the capture of genes specifically active in differentiated embryonic stem cells and in mouse embryos. Dev Dyn 212:326–333

    Article  PubMed  CAS  Google Scholar 

  42. Clark KJ, Balciunas D, Pogoda HM, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM, Ni J, Nielsen AL, Patowary A, Scaria V, Sivasubbu S, Xu X, Hammerschmidt M, Ekker SC (2011) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8:506–515

    Article  PubMed  CAS  Google Scholar 

  43. Craig NL, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  44. Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, Takeda J, Horie K, Olson WK, Hackett PB (2005) Target-site preferences of Sleeping Beauty transposons. J Mol Biol 346:161–173

    Article  PubMed  CAS  Google Scholar 

  45. Bauser CA, Elick TA, Fraser MJ (1999) Proteins from nuclear extracts of two lepidopteran cell lines recognize the ends of TTAA-specific transposons piggyBac and tagalong. Insect Mol Biol 8:223–230

    Article  PubMed  CAS  Google Scholar 

  46. Yergeau DA, Kuliyev E, Mead PE (2007) Injection-mediated transposon transgenesis in Xenopus tropicalis and the identification of integration sites by modified extension primer tag selection (EPTS) linker-mediated PCR. Nat Protoc 2:2975–2986

    Article  PubMed  CAS  Google Scholar 

  47. Waldner C, Roose M, Ryffel GU (2007) Marking transgenic Xenopus froglets with passive micro transponders. Transgenic Res 16:539–540

    Article  PubMed  CAS  Google Scholar 

  48. Yergeau DA, Kelley CM, Zhu H, Kuliyev E, Mead PE (2010) Transposon transgenesis in Xenopus. Methods 51:92–100

    Article  PubMed  CAS  Google Scholar 

  49. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HD042994 and MH079381 and by the American Lebanese and Syrian Associated Charities (ALSAC) to PEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Mead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yergeau, D.A., Kelley, C.M., Zhu, H., Kuliyev, E., Mead, P.E. (2012). Forward Genetic Screens in Xenopus Using Transposon-Mediated Insertional Mutagenesis. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics